
110

109

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center.. 2
Cameron Station
Alexandria, VA 22304-6145

2. Dudley Knox Library... 2
Code 052
Naval Postgraduate School
Monterey, CA 93943-5002

3. Dr. Ted Lewis, Chairman and Professor.. 1
Computer Science Department Code CS/TL
Naval Postgraduate School
Monterey, CA 93943-5000

4. Dr. David R. Pratt, Assistant Professor.. 2
Computer Science Department Code CS/PR
Naval Postgraduate School
Monterey, CA 93943-5000

5. Dr. Michael J. Zyda, Professor .. 2
Computer Science Department Code CS/ZK
Naval Postgraduate School
Monterey, CA 93943-5000

6. Mr. Paul Barham, Computer Specialist ... 1
Computer Science Department Code CS
Naval Postgraduate School
Monterey, CA 93943-5000

7. U.S. Army Topographic Engineering Center .. 1
Attn: Jeff Turner CETEC-TD-SM
7701 Telegraph Road
Alexandria, VA 22315-3864

8. Lt. Anne E. Watt USN ... 2
Computer Science Dept. 9F
U.S. Naval Academy
572 Holloway Rd.
Annapolis, MD 21402

108

[MONA91] Monahan, J.,NPSNET: Physically-Based Modeling Enhancements to an Object
File Format,Master’s Thesis, Naval Postgraduate School, Monterey, California,
September 1991.

[NASH92] Nash, D.,NPSNET: Modeling the In-Flight and Terminal Properties of Ballistic
Munitions, Master’s Thesis, Naval Postgraduate School, Monterey, California,
September 1992.

[NAVA79] Navarra, J., “Atmosphere, Weather and Climate: An Introduction to
Meteorology,” W.B. Saunders Company, Philadelphia, Pennsylvania, 1979.

[SCHA81] Schaefer, V. and Day, J., “A Field Guide to the Atmosphere,” Houghton Mifflin
Company, Boston, Massachusetts, 1981.

[SGIA94] Silicon Graphics, Inc. Document Number 007-1680-020,IRIS Performer
Programming Guide, J. Hartman and P. Creek, 1994.

[SGIB94] Silicon Graphics, Inc. Document Number 007-1681-020,IRIS Performer
Reference Pages, S. Fischler, J Helman, M. Jones, J. Rohlf, A. Schaffer, and C.
Tanner, 1994.

[THOR87] Thorp, J., “The New Technology of Large Scale Simulator Networking:
Implications for Mastering the Art of Warfighting,”Proceedings of the 9th
Interservice/Industry Training System Conference, November - December 1987.

[WALT92] Walters, A., NPSNET: Dynamic Terrain and Cultured Feature Depiction,
Master’s Thesis, Naval Postgraduate School, Monterey, California, September
1992.

[WEIS91] Weiss, N. and Hassett, M., “Introductory Statistics,” 3rd Edition, Addison-
Wesley Publishing Company Inc., Menlo Park, California, 1991.

[ZYDA90} Zyda, M., Naval Postgraduate School Graphics and Video Laboratory Notes,
Book 6, 1990.

[ZYDA93] Zyda, M., Pratt, D., Falby, J., Barham, P., and Kelleher, K., “NPSNET and the
Naval Postgraduate School Graphics and Video Laboratory,”Presence, Vol. 2,
No. 3, 1993.

107

LIST OF REFERENCES

[BOEH94] Boehm, A., “Visual Translucent Algorithm (Vista),”Simulation, February 1994.

[BURG91] Burg, J., Moshell, J., et al., Behavioral Representation in Virtual Reality.Pro-
ceedings of Behavioral Representation Symposium. Institute for Simulation and
Training. Orlando, Florida, 1991.

[CORB93] Corbin, D.,NPSNET: Environmental Effects for a Real-Time Virtual World
Battlefield Simulator, Master’s Thesis, Naval Postgraduate School, Monterey,
California, September 1993.

[FAA65] Federal Aviation Agency and Department of Commerce, “Aviation Weather,” by
W. Nash, 1965.

[IST93] Institute for Simulation and Training, IST-CR-93-15,Standard for Information
Technology - Protocols for Distributed Interactive Simulation Applications
[Proposed IEEE Standard Draft], University of Central Florida, Orlando,
Florida, May 1993.

[ISTA93] Institute for Simulation and Training, IST-TR-93-10,Distributed Interactive
Simulation Operational Concept [Draft 2.2], University of Central Florida,
Orlando, Florida, March 1993.

[IST94] Institute for Simulation and Training,Frequently Asked Questions About
Dynamic Terrain, University of Central Florida, Orlando, Florida, 1994.

[LI93] Li, X., Moshell, J., “Modeling Soil: Realtime Dynamic Models for Soil Slippage
and Manipulation,”Computer Graphics Proceedings, Annual Conference Series
1993, ACM SIGGRAPH 1-6 August 1993.

[LIES66] Lieske, R., and Reiter, M., “Equations of Motion for a Modified Point Mass
Trajectory,” Ballistics Research LaboratoriesReport Number 1314, March
1966.

[LISL94] Lisle, C., Altman, M., Kilby, M., Sartor, M., “Architectures for Dynamic Terrain
and Dynamic Environments in Distributed Interactive Simulation,”10th DIS
Workshop on Standards for the Interoperability of Defense Simulations, Volume
II Position Papers, March 1994.

[LADS94] Loral Advanced Distributed Simulation, “Final Report Dynamic Environment
Modeling in Distributed Interactive Simulations,” Loral Advanced Distributed
Simulation, May 1994.

106

105

KEYPAD 2 KEY (up) - Decreases user’s direction of view pitch

down one unit.

KEYPAD 6 KEY (up) - Increases user’s direction of view heading

right one unit.

KEYPAD 8 KEY (up) - Decreases user’s direction of view heading

left one unit.

S KEY - Shoots missile.

104

D. EXPLOSIONS TEST HARNESS

1. How to Start the Program

This test harness is simply run by typing on the command line:

blowup [-p x y z] [-f flightfile] <-p x y z> <-f flightfile> ...

[] = required input

< > = optional input - multiple sets of above two <>’s may

be specified, but they must occur in sets.

-f = indicates a Multigen file follows that is to be loaded by

the program

flightfile = specifies the Multigen file to be loaded

-p = indicates the position of the Multigen object follows

x y z = the position in the world (eyepoint always starts at

0,0,0)

2. Key Bindings

ESCAPE KEY - Terminate the program.

F1 KEY - Turns on Performer’s pfDrawChanStats for evaluating

program’s performance. See [SGIA94] for a complete description of this function.

PAGE UP KEY - Increases viewer’s eye elevation position.

PAGE DOWN KEY - Decreases viewer’s eye elevation position.

UP ARROW KEY - User moves forward one unit in direction of

view.

DOWN ARROW KEY - User moves backward one unit in

direction of view.

RIGHT ARROW KEY - User moves right one unit.

LEFT ARROW KEY - User moves left one unit.

KEYPAD 8 KEY (up) - Increases user’s direction of view pitch up

one unit.

103

F3 KEY - Presents user with a view of the boundary between cells

6and 7 where wind vectors directly oppose each other.

F4 KEY - Presents user with a view of the boundary between cells

5 and 6 where 30ο difference in headings exists.

F5 KEY - Present two boundaries where changes in velocities occur

- between cells 0 and 1 and between cell 1 and 2.

B KEY - Presents an aerial view of the entire world. User must move

mouse downward to initially view. Also, removes user’s height flight restriction (0.0 m to

10000.0 m in X, 0.0 m to 10000.0 m in Y, and 3.0m to 8000.0 in Z). If this key is pressed

again, viewer is back in the world.

F KEY - Removes displayed cell boundaries. If this key is pressed

again, cell boundaries are displayed.

C. DIS DESTRUCTIBLE ENTITY PDU IMPLEMENTATION PROGRAM

This 2D grid modeler implementation of DIS Destructible Entity PDUs is run on

one machine as the terrain manger and on one or more other machines as the simulation

participant(s). The terrain manager needs to be started first so that it does not miss any

world occurrences. Host players may be started at any time after the terrain manager

initialized. Both the participants’ and terrain manager’s programs are started by simply

typing run on the command line. In addition the following key bindings exist:

ESCAPE KEY - Terminates the terrain manager’s or player’s program.

END KEY - Pressing this key on a player’s host begins the periodic

shooting of missiles by that participant.

DELETE KEY - Resets the player’s launcher.

A KEY - Allows user of the terrain manager to send a test Create/Modify

PDU without the receipt of a Detonation PDU.

D KEY - Allows the user of the terrain manager to send a test Deletion

PDU.

102

B KEY+Y KEY+MINUS KEY - Decrements light model’s blue

ambient component by 0.1.

B KEY+ Y KEY+ PLUS KEY - Increments light model’s blue

ambient component by 0.1.

B. WIND VECTOR SIMULATOR

1. How to Start the Program

The wind vector simulator is started by entering the following on the

command line where filename is a file that exists in the current directory and was written

to by the Cloud Modeler:

winds -r filename

2. Input Devices for Viewing the Clouds Within the Wind Vector World

a. Mouse

Move Mouse Right- User turns right.

Move Mouse Left- User turns left.

Push Left Button - User accelerates forward.

Push Right Button- User accelerates backward.

b. Key Bindings

The key binding below present various views of the world. Figure 11 in

Chapter 4 presents the actual winds that are being displayed.

ESCAPE KEY - Terminates program.

F1 KEY - Turns on Performer’s pfDrawChanStats for evaluating

program’s performance. See [SGIA94] for a complete description of this function.

F2 KEY - Presents user with a view of the boundary between cells

2 and 3 where wind vectors directly oppose each other. The boundary between cells 3 and

4 is also displayed where there is a change in velocity.

101

L KEY+B KEY+M KEY+PLUS KEY - Increments light’s blue

ambient component by 0.1.

L KEY+R KEY+H KEY+MINUS KEY - Decrements light’s red

diffuse component by 0.1. (H forhue)

L KEY+R KEY+H KEY+PLUS KEY - Increments light’s red

diffuse component by 0.1.

L KEY+G KEY+H KEY+MINUS KEY - Decrements light’s

green diffuse component by 0.1.

L KEY+G KEY+H KEY+PLUS KEY - Increments light’s green

diffuse component by 0.1.

L KEY+B KEY+H KEY+MINUS KEY - Decrements light’s blue

diffuse component by 0.1.

L KEY+B KEY+H KEY+PLUS KEY - Increments light’s blue

diffuse component by 0.1.

L KEY+P KEY+PLUS KEY - Light comes from a quadrant in X-

Y plane one higher than the previously current one (quadrants I, II, III, IV). If the current

one is quadrant IV then this key sequence will cause the light to come from quadrant I.

L KEY+P KEY+MINUS KEY - Light comes from a quadrant in

X-Y plane one less than the previously current one (quadrants I, II, III, IV). If the current

one is quadrant I then this key sequence will cause the light to come from quadrant IV.

R KEY+Y KEY+MINUS KEY - Decrements light model’s red

ambient component by 0.1.

R KEY+Y KEY+PLUS KEY -Increments light model’s red

ambient component by 0.1.

G KEY+Y KEY+MINUS KEY - Decrements light model’s green

ambient component by 0.1.

G KEY+Y KEY+PLUS KEY - Increments light model’s green

ambient component by 0.1.

100

U KEY+1,2,3,4,5,6,7,8,9,or 0 KEY+F10 KEY - Displays cloud

with uniform distribution of puffs in 1,2,3,4,5,6,7,8,9,or 10 row(s) and with a depth of ten.

N KEY+F1 KEY - Displays cloud with a normal distribution of

puffs with a depth of one.

N KEY+F3 KEY - Displays cloud with a normal distribution of

puffs with a depth of three.

N KEY+F5 KEY - Displays cloud with a normal distribution of

puffs with a depth of five.

N KEY+F10 KEY - Displays cloud with a normal distribution of

puffs with a depth of ten.

Z KEY+F1 KEY - Displays cloud with a symmetrical normal

distribution of puffs with a depth of one.

Z KEY+F3 KEY - Displays cloud with a symmetrical normal

distribution of puffs with a depth of three.

Z KEY+F5 KEY - Displays cloud with a symmetrical normal

distribution of puffs with a depth of five.

Z KEY+F10 KEY - Displays cloud with a symmetrical normal

distribution of puffs with a depth of ten.

L KEY+R KEY+M KEY+MINUS KEY - Decrements light’s red

ambient component by 0.1. (M for ambient)

L KEY+R KEY+M KEY+PLUS KEY -Increments light’s red

ambient component by 0.1.

L KEY+G KEY+M KEY+MINUS KEY - Decrements light’s

green ambient component by 0.1.

L KEY+G KEY+M KEY+PLUS KEY - Increments light’s green

ambient component by 0.1.

L KEY+B KEY+M KEY+MINUS KEY - Decrements light’s blue

ambient component by 0.1.

99

S KEY+F1 KEY- Scales cloud’s size by a factor of 10.

S KEY+F2 KEY- Scales cloud’s size by a factor of 20.

S KEY+F3 KEY- Scales cloud’s size by a factor of 30.

S KEY+F4 KEY- Scales cloud’s size by a factor of 40.

S KEY+F5 KEY- Scales cloud’s size by a factor of 50.

S KEY+F6 KEY- Scales cloud’s size by a factor of 60.

S KEY+F7 KEY- Scales cloud’s size by a factor of 75.

S KEY+F8 KEY- Scales cloud’s size by a factor of 100.

S KEY+F9 KEY- Scales cloud’s size by a factor of 150.

S KEY+F10 KEY- Scales cloud’s size by a factor of 200.

C KEY+F1 KEY - Displays 1 puff.

C KEY+F2 KEY - Displays 2 puffs.

C KEY+F3 KEY - Displays 3 puffs.

C KEY+F4 KEY - Displays 30 puffs.

C KEY+F5 KEY - Displays 40 puffs.

C KEY+F6 KEY - Displays 50 puffs.

C KEY+F7 KEY - Displays 75 puffs.

C KEY+F8 KEY - Displays 100 puffs.

C KEY+F9 KEY - Displays 150 puffs.

C KEY+F10 KEY - Displays 200 puffs.

U KEY+1,2,3,4,5,6,7,8,9,or 0 KEY+F1 KEY - Displays cloud

with uniform distribution of puffs in 1,2,3,4,5,6,7,8,9,or 10 row(s) and with a depth of one.

U KEY+1,2,3,4,5,6,7,8,9,or 0 KEY+F3 KEY - Displays cloud

with uniform distribution of puffs in 1,2,3,4,5,6,7,8,9,or 10 row(s) and with a depth of

three.

U KEY+1,2,3,4,5,6,7,8,9,or 0 KEY+F5 KEY - Displays cloud

with uniform distribution of puffs in 1,2,3,4,5,6,7,8,9,or 10 row(s) and with a depth of five.

98

R KEY+A KEY+MINUS KEY - Decrements cloud’s red ambient

component by 0.1.

R KEY+A KEY+PLUS KEY -Increments cloud’s red ambient

component by 0.1.

G KEY+A KEY+MINUS KEY - Decrements cloud’s green

ambient component by 0.1.

G KEY+ A KEY +PLUS KEY - Increments cloud’s green ambient

component by 0.1.

B KEY+A KEY+MINUS KEY - Decrements cloud’s blue ambient

component by 0.1.

B KEY+A KEY+PLUS KEY - Increments cloud’s blue ambient

component by 0.1.

R KEY+D KEY+MINUS KEY - Decrements cloud’s red diffuse

component by 0.1.

R KEY+D KEY+PLUS KEY - Increments cloud’s red diffuse

component by 0.1.

G KEY+D KEY+MINUS KEY - Decrements cloud’s green

diffuse component by 0.1.

G KEY+D KEY+PLUS KEY - Increments cloud’s green diffuse

component by 0.1.

B KEY+D KEY+MINUS KEY - Decrements cloud’s blue diffuse

component by 0.1.

B KEY+D KEY+PLUS KEY - Increments cloud’s blue diffuse

component by 0.1.

T KEY+MINUS - Decrements cloud’s opacity component by 0.1.

T KEY+PLUS - Increments cloud’s opacity component by 0.1.

O KEY - Displays cloud with just the texture applied - no ambient,

diffuse, or opacity components are incorporated.

97

APPENDIX. USER’S GUIDES

This appendix contains all of the information required to run the set of effects

simulators described in this thesis. These simulators include the Cloud Modeler, wind

vector simulator, DIS Destructible Entity PDU Implementation Program, and explosions

test harness.

A. CLOUD MODELER

1. How to Start the Program

The Cloud Modeler is started by entering the following on the command

line where filename is a file that exists in the current directory for writing cloud data to:

cloudmodeler -w filename

2. Input Devices for Designing and Viewing a Cloud

a. Mouse

Move Mouse Right- User turns right.

Move Mouse Left- User turns left.

Push Left Button - User accelerates forward.

Push Right Button- User accelerates backward.

b. Key Bindings

The key bindings below indicate the order in which the keys need to be

pressed in order to perform the modification represented by the sequence. Keys are to be

pressed sequentially not all at once.

ESCAPE KEY - Exits the program.

Q KEY - Turns on Performer’s pfDrawChanStats for evaluating

program’s performance. See [SGIA94] for a complete description of this function.

W KEY - Writes current cloud’s parameters to the designated file.

96

simulators like NPSNET. Lastly, in the area of explosive effects, all forces including air

friction and the object’s internal bonding forces need to be accurately determined and

properly applied to the exploding objects.

95

VII. CONCLUSION AND TOPICS FOR FURTHER RESEARCH

A. CONCLUSION

Providing a truly believable virtual battlefield simulator means that designers must

take into consideration a wide variety of occurrences that are both obviously present in a

battle zone and those that are less apparent. Now that the ground work for such combat

simulators has been laid, many researchers are realizing the significant role that these less

obvious effects play in providing a truly convincing synthetic environment. It has also

become apparent just how many of these effects exist and the amount of detail required to

realistically model them. In addition, networking further complicates this issue. In light of

these circumstances, researchers have found it difficult to incorporate such effects while

maintaining their simulator’s real-time performance. This problem is due in part to the

limited amount of computation power available. Our work addresses some of these effects

and their potential for incorporation within such simulators like NPSNET. We too ran into

these difficulties, particularly in terms of providing the ability to fly through realistic clouds

and in modeling cloud movement based on gridded wind vectors. However, we have

provided a starting point for incorporating our effects in real-time simulators by designing

a variety of test harnesses (as have been previously described) for studying and

experimenting with modifications to these models. Thus, these mini-simulators provide

feedback regarding models’ potential for incorporation within dynamic real-time virtual

worlds.

B. FUTURE RESEARCH

Future research in the area of modeling dynamic effects is vast. In terms of

meteorological occurrences, frontal systems, precipitation, and flooding need to be

simulated. Dynamic terrain issues requiring future research include implementing areal

features (such as oil spills and rivers) and modeling actual modifications to the terrain

database as opposed to placing earthworks such as craters or berms on top of the terrain.

These terrain modifications have been simulated, but they do not exist in real-time

94

polygons that would be suitable for exploding within a real-time simulator. Overall, these

ideas are just a couple of options that could be implemented without detracting from the

physically-based aspects of the explosions. However, integration of these effects within

NPSNET may require incorporating a variation of these ideas or more drastic revisions

resulting in less realistic explosive effects.

93

D. EXPLOSIONS SUMMARY

The performance tests above indicate that explosions occur in real-time on their

own; however the amount of calculations involved in the function’s algorithms are too

many to be handled by a real-time synthetic environment like NPSNET, especially if many

explosions are occurring simultaneously. There are however, minor modifications that

could be made to facilitate their use within NPSNET. One such modification entails

performing all of the function’s computations except the actual ballistic motion equations

prior to run-time and placing the values in a lookup table(s). This implementation would

require that the simulation have prior knowledge of all possible objects that could exist in

its world and would take away from the function’s ability to handle any entity that it is sent.

Another way that these explosions might be implemented within NPSNET, is by having a

an “explodable” model available to switch in to the scene for every object that could

rupture. Thus, when an object is struck, its “alive” model would be switched out and

replaced with an explodable model that would be erupted by the function. In addition, no

conversions would be necessary and the object could be comprised only of an amount of

Figure 25: Helicopter After Impact

92

potential for incorporation in NPSNET. Our first test involved shooting a building made of

seven quad primitives where no conversion to explodable format except for rebinding the

normals to per primitive was necessary. During the explosion, the frame rate remained

constant at its preset rate of 30 frames per second. In our next test the explosion function

had to convert a helicopter model made of 89 tristrip primitives (all contained either one or

two triangles) to explodable format before the polygons were discharged. The total

triangles resulting from this conversion was 160 and again the frame rate remained constant

at 30 frames per second except for an initial flash indication of a frame rate of 20 frames

per second. This latter frame rate was due to the tristrip conversion process. Our last test

involved part of a building structure which was comprised of 127 tristrip primitives (again,

all contained either one or two triangles) that had to be converted. The conversion resulted

in 230 triangles and with this increased amount of polygons, the explosion only operated at

a rate of 15 frames per second. An example of a “before and after shot” is illustrated in

Figures 24 and 25 which display the helicopter before the weapon’s impact and then during

the explosion respectively.

Figure 24: Helicopter Before Impact

91

c. Completion of Motion Algorithm

The last function this algorithm performs is the actual changing of each

primitive’s location values in memory to reflect their newly calculated rotations and

positions since the last call to the explosion function. These new positions are the result of

multiplying each primitive’s velocity by the deltatime argument. Thus, after this function

returns control to the calling program, that application’s draw process displays the

primitives with their new orientation at their new locations.

C. PERFORMANCE WITHIN A TEST APPLICATION

In order to test the explosion function we developed a simple application that loads

into a Performer world one or more objects that a user may shoot and then witness their

explosions. The user moves through this environment by pushing the arrow keys on the

keyboard. When the viewer’s cross-hairs displayed on the screen are positioned in front of

an object, the operator is able to shoot it by pushing the “S” key. An intersection routine is

called when this key is pressed to determine if an entity in the scene is in front of and close

enough to the viewer to have been hit by this weapon (within 5000 meters). If an object was

hit, then this routine returns a pointer to the actual pfGeoSet that was struck (even if the

object was originally built outside of the Performer environment), the exact point of impact

position, and a flag indicating that a collision did occur. Upon the receipt of these values,

the application proceeds to call the explosion routine every time through its simulation loop

with a number of calls counter, the force (which is a constant equaling 1000 newtons), the

pfGeoSet pointer, an array allocated to hold the velocity of the exploding polygons

belonging to the pfGeoSet, the time it took to get through the simulation loop, and the point

of impact as the parameters to the function. Once the number of calls counter (which is

incremented in the explosion function every time that it is called) reaches 150 the

application stops calling the explosion function for that pfGeoSet.

After designing this application which verified that explosions produced by the

explosion function occur realistically, we ran some tests to determine the function’s

90

primitives are rotated about their computed axes ten degrees after every call to the

explosion function.

b. Ballistic Motion Equations

Once the rotation directions have been calculated the only computation left

to perform is the polygon’s actual translation along its force vector. Ballistic motion

equations, specifically Cromer-Euler equations which were chosen due to their speed and

ability to correct their own inaccuracies periodically, are used to model this translation.

These computations employ both gravity and an air friction coefficient whose values are

constant in this function - 9.8 meters per second squared and 2.0 respectively. As

previously mentioned, the velocity initially used in these equations is the resultant velocity

from the preceding call to this function (unless the function has been called for the first time

for the pfGeoSet at hand). These velocity values are used to compute the new values for the

force components (X, Y, and Z), which are used to compute the acceleration components

of the primitives, and finally the acceleration components are multiplied by the deltatime

parameter to produce the new velocity components. These ballistic motion computations

are displayed in Figure 23 where Vel holds the velocity vectors for all primitives of the

pfGeoSet.

//*****Compute polygon’s position with ballistic motion equations.*****
//(Continuation of for loop that cycles through all pfGeoSet primitives.)
forceX = (-1.0) * air_fric * Vel[i][0];
forceY = (-1.0) * air_fric * Vel[i][1];
forceZ = (-1.0) * mass * gravity - air_fric * Vel[i][2];

accelX = forceX/mass;
accelY = forceY/mass;
accelZ = forceZ/mass;

Vel[i][0] = accelX * deltatime;
Vel[i][1] = accelY * deltatime;
Vel[i][2] = accelZ * deltatime;

Figure 23: Ballistic Motion Equations

89

force direction vector. The example code presented in this figure is based on a pfGeoSet

comprised of independent triangles. Additionally, Performer functions are used to perform

the tasks that their names (after the pf) specify and return the result in their first arguments.

Specifics regarding these functions are found in [SGIB94].

a. Polygons’ Rotation

Another aspect of the polygons’ movement that is calculated by this

function is the direction of each polygon’s rotation. This direction is computed by taking

the cross product of a primitive’s force vector (not scaled by the velocity magnitude

described above) with its normal, and then normalizing the result. Thus, this is the point in

the motion algorithm where having a normal bound per primitive is important. Otherwise,

time consuming normal calculations would have to be computed during every call of the

explosion sequence. The rotational amount, however, is not calculated, instead all

//*****Compute velocities for all polygons -> num_prims.*****
for (int i = 0; i<num_prims; i++)
{

//*****Calculate the midpoint (center of mass) of each polygon.*****
 midptX = (sv4[sides3 * i][0] + sv4[sides3 * i+1][0] + sv4[sides3 * i+2][0])/sides3;
 midptY = (sv4[sides3 * i][1] + sv4[sides3 * i+1][1] + sv4[sides3 * i+2][1])/sides3;
 midptZ = (sv4[sides3 * i][2] + sv4[sides3 * i+1][2] + sv4[sides3 * i+2][2])/sides3;

//*****Compute distance between polygon and point of impact.*****
 pfSetVec3(midpt, midptX, midptY, midptZ);
 dist = pfDistancePt3(where, midpt) //where holds the point of impact

//*****Compute force direction - polygon explosion path.*****
 force_dir[0] = midptX - where[0];
 force_dir[1] = midptY - where[1];
 force_dir[2] = midptZ - where[2];
 pfNormalizeVec3(force_dir);

//*****Compute initial velocity one time per pfGeoSet polygon.*****
 if (!call_num)
 {

 //*****First assign Vel the force direction, then scale by initial velocity value.*****
 pfCopyVec3(Vel[i], force_dir);
 Vinit = deltatime * ((force/(1+dist))- mass*k;
 pfScaleVec3(Vel[i], Vinit, Vel[i]);
 } //end if !call_num
//*****The for loop continues to include the rest of the motion equations.*****

Figure 22: Computation of Instantaneous Velocity for Triangle Primitives

88

a. Instantaneous Velocity Calculation

The motion algorithm’s equations rely on the values generated in the

previous call to the function except at the time of the first call. When the motion equations

are executed at this time, the algorithm begins by calculating the initial impulse of the force

applied to each of the polygons which is incorporated as the polygon’s instantaneous

velocity. This initial velocity is based on how close the polygon is to the point of impact as

described in the concepts outlined above and it is thus, computed separately for each of the

primitives using Equation 4 below where Vi is the velocity for the ith primitive.

(Eq 6.1)

Overall, the equation represents the instantaneous force multiplied by a time

variable, deltatime. The variables in the equation that comprise the initial force inflicting

the polygon at hand denote the following values: force is the initial force magnitude at the

actual point of impact which is passed in as a parameter, dist is the distance from the center

of mass of the polygon to this collision point, mass is the mass of the primitive which is a

constant containing a value of ten kilograms, and k is also a constant set at 0.001. The

reason that k is included is so that the equation takes into account the amount of force

necessary to release the polygon from the bonding of the overall structure. This concept is

incorporated by subtracting k multiplied by the variable mass from the rest of the equation.

In addition, one is added to dist to prevent division by zero in the case that the point of

impact is exactly at the polygon’s center of mass. Finally, once the instantaneous velocity

is computed for each of the polygons, the primitives’ force direction vectors are multiplied

by the corresponding initial velocity values. This scaling of the direction vectors creates the

velocity vectors that are stored in the function’s velocity array parameter which is

continually manipulated by the ballistic motion equations during each call to this function

(later in the algorithm), as previously mentioned. Figure 22 illustrates the preliminary

computations needed to calculate the instantaneous velocity (polygons’ centers of mass and

force directional vectors) followed by the velocity’s computation and its application to the

Impulse = Vi deltatime force 1 dist+)()⁄ mass k×–()×=

87

pfGSetPrimType). Although these last two function calls complete the overall conversion

of tristrips to triangles, there is one more part to the conversion algorithm that is employed

if the pfGeoSet parameter is not made of tristrips.

As stated earlier pfGeoSets comprised of converted triangles must have

normals that are bound per primitive to support the motion equations. This requirement also

pertains to all other primitives which in the case of the explosion algorithm only include

quads and original independent triangles (tris) - other Performer primitives are not capable

of being filled with colors and therefore, are not handled. If normals are bound in any other

way then this part of the conversion routine ensures that a pfGeoSet’s normals array is

permanently changed so that every primitive has one normal only. The method of

modification used is the same as the one used for converted tristrips.

Finally, just as the normals’ modification is permanent so are all of the rest

of the pfGeoSet changes that have been presented. Therefore, conversions, if needed, are

only performed during the first call to this function which is important, because these

conversions require a significant amount of computation that if always implemented will

slow down the explosion sequence. Thus, during the rest of the calls to the function the

conversion algorithm is skipped and only the motion equations are applied to each of the

polygons.

2. Explosion Motion Equations

The motion calculations used in this function are based on several physically-based

concepts (assumptions) which are described in the following statements:

• When an object is impacted by a force, that force attenuates as the distance
from the point of impact increases.

• When a force strikes an object, the point of impact is its center of mass.
• When a force impacts an object, that object rotates about the axis normal to the

direction of the force.
• When an object is struck by a force it must overcome internal forces to break

apart. (e.g., A brick building explodes into fragments if the force is strong
enough to break the cement bond.)

86

Incorporating textures within a pfGeoSet means specifying coordinates that

map the texture on to the object so as to cover it entirely or partially. Remapping a texture

to a pfGeoSet which has been modified to include many more primitives than it once had,

requires a complex computationally intensive algorithm in order to maintain the

appearance of the overall object. In addition, when an explosion occurs it usually surprises

a viewer and it lasts a very short amount of time meaning that texturing is not an attribute

that is readily noticed or missed. Therefore, the conversion algorithm not only ignores

texturing, but also deletes it. The reason for this deletion, is that when texture mapping

coordinates meant for one set of primitives are applied to a different group of primitives

unpredictable and inconsistent results occur.

However, color conversion is accurately handled. If colors are bound to the

pfGeoSet as a whole, then no conversion is needed. But, if they are assigned per primitive

or per vertex then a conversion routine must be employed which is very similar to the

tristrip to independent triangle conversion algorithm. The color per vertex reassignment

routine is indeed exactly identical to the triangle conversion algorithm except that it

modifies (expands) the color vice the vertices array. The color per primitive conversion is

a little less complex, for it creates an array large enough to hold RGBA color components

for each of the triangles and then assigns a color to the list for each triangle based on its

original owning tristrip primitive. Therefore, triangles that are part of the same tristrip

primitive are assigned the same color. Thus, the end result of this routine and the other color

conversion algorithms is that the object’s coloring remains consistent with the original

pfGeoSet when tristrips are converted to independent triangles.

e. Completion of Conversion Algorithm

Finally after all pfGeoSet attributes have been converted, the only other

aspects related to the pfGeoSet that need to be reset are the number and type of primitive

that comprise the pfGeoSet. This assignment is accomplished by simply calling the

Performer functions provided specifically for this purpose (pfGSetNumPrims,

85

c. Reassigning Tristrip Normals

Not only do the tristrip pfGeoSet’s vertices have to be reassigned, but the

normals list must be changed to match the new independent triangles. Although normals’

values can be assigned so that they are bound per vertex, per primitive, or overall, this

function requires that they be assigned per primitive (one per triangle). The per primitive

binding is necessary for the motion equations that follow the conversion algorithm in the

explosion function and are explained later in this chapter. As illustrated in Figure 21, a

triangle’s normal is computed by treating two of its sides as vectors (X, Y, and Z values for

each vertex are retrieved from the new array.), taking the cross product of these vectors,

and then normalizing the result of the cross product. This computation is performed for all

of the triangles after which an array the size of the total number of these triangles is created

and assigned these normals which is then used to reset the pfGeoSet.

d. Modification of Tristrip Textures and Colors

Besides the normals, the remaining two construction attributes, textures and

colors, must be modified to coincide with the new triangles. This part of the algorithm

modifies these two attributes so that they are consistent with their original tristrip binding

types.

P2

(P2 - P1) X (P3 - P2) = Triangle’s normalN

N/|N| = Normalized Normal Vector

P1 P3

Figure 21: Computing the Normal of a Triangle

84

as its next three vertices, the first three vertices of the new tristrip primitive (which means

the next three values in the original array) and NOT the previous last two from the three

vertices most recently assigned to the new array. This overall algorithm continues until all

tristrips belonging to the pfGeoSet have been converted to independent triangles and the

pfGeoSet is “reset” with the new array of vertices positions. This algorithm is outlined in

Figure 20.

if (prim_type == PFGS_TRISTRIPS)
{

//******Calculate all tristrips’ vertices and triangles.**********
 for (int z =0; z<num_prims; z++)
 {num_tris += lengths[z] - 2; //triangles in a primitive = vertices - 2 }
 num_verts = num_tris * sides3;

//**********Assign vertices for triangles to pfGeoSet.*********
 //*****Each Triangle is assigned the previous 2 vertices and the next vertex.*****
 //Allocate memory so that all triangles’ vertices have separate memory locations.
 sv4 = (pfVec3 *)pfMalloc((int)(num_verts) * sizeof(pfVec3), arena);
 int rep = 0; //Used to obtain the last two vertices of the previous triangle.
 int prevA = 0; //Used to hold old array position where new tristrip starts.
 for (int j = 0; j<num_prims; j++)
 {
 for (int a = prevA; a<(((lengths[j]-2)*3) + prevA); a+=3)
 {
 sv4[a][0] = sv3[a-rep][0];
 sv4[a][1] = sv3[a-rep][1];
 sv4[a][2] = sv3[a-rep][2];
 sv4[a+1][0] = sv3[a-rep+1][0];
 sv4[a+1][1] = sv3[a-rep+1][1];
 sv4[a+1][2] = sv3[a-rep+1][2];
 sv4[a+2][0] = sv3[a-rep+2][0];
 sv4[a+2][1] = sv3[a-rep+2][1];
 sv4[a+2][2] = sv3[a-rep+2][2];
 rep +=2;
 } //end inner “for”
 prevA = a;
 rep -= 2; //Starting with new tristrip, so don’t need last two vertices.
 }//end outer “for”
 //Reassign vertices to pfGeoSet.
 pfGSetAttr (gset1, PFGS_COORD3, PFGS_PER_VERTEX, sv4, NULL);

Figure 20: Algorithm Used to Convert Tristrips to Independent Triangles

83

b. Tristrips to Independent Triangles

The next conversion step provides more polygons to explode than are

initially assigned to the pfGeoSet. This part converts tristrip primitives into the individual

triangles of which they are comprised, if indeed the pfGeoSet is composed of tristrips

(otherwise this part is skipped). The importance of this algorithm lies in the fact that almost

all geometry is composed of tristrips since they are drawn very efficiently (as described in

Chapter IV) due to the fact that vertices are shared among the triangles that compose the

tristrip. As stated previously however, sharing of vertices does not allow for independent

polygon motion.

Converting tristrips to triangles (Performer calls them tris) involves initially

calculating the total number of vertices needed to assign each triangle its own set of

vertices. This conversion must be implemented for all tristrip primitives contained in the

pfGeoSet. The amount of triangles within a tristrip is equal to the number of vertices minus

two and since a triangle has three vertices, the total number of vertices needed for

independent triangles is equal to this amount of triangles multiplied by three. A new

vertices array is created using this end result as its size to which all of the independent

triangles’ vertices positions are stored. However, this assignment is not trivial. The

algorithm assigns vertices to the new array in sets of three. The first three vertices of the

first tristrip primitive from the original array are assigned to the new array in that order as

its first three values (the first triangle). The new array is then assigned its next three vertices

in such a way that the first of these three (memory location three) is assigned the second to

last vertex assigned in its previously assigned set of three vertices. The second of these

three is assigned the last vertex assigned in its previously assigned set of three vertices. And

finally, the third one is assigned the next vertex in the original tristrip array. Thus, this

assignment simulates the tristrip drawing procedure as described in Chapter IV and

therefore, continues in this manner until all triangles of the current tristrip are independent

primitives. At this point, the algorithm must start the assignment process all over again with

the pfGeoSet’s next tristrip polygon. Starting over again means assigning to the new array

82

//********** Find out about pfGeoSet.**********
prim_type = pfGetGSetPrimType (gset1);
num_prims = pfGetGSetNumPrims(gset1);
//If primitives are constructed of tristrips then retrieve the array that contains
//the number of vertices per primitive.
 if (prim_type == PFGS_TRISTRIPS)
 {lengths = pfGetGSetPrimLengths(gset1); }
//****Get attributes’ bindings.
norm_bind = pfGetGSetAttrBind(gset1, PFGS_NORMAL3)
col_bind = pfGetGSetAttrBind(gset1, PFGS_COLOR4);
//Really don’t need next line - only one way to assign vertices.
verts_bind = pfGetGSetAttrBind(gset1, PFGS_COORD3);
text_bind = pfGetGSetAttrBind(gset1, PFGS_TEXCOORD2);
//****Get attribute arrays and indices arrays if present.
pfGetGSetAttrLists (gset1, PFGS_COORD3,(void **) &sv2, &svi2);
pfGetGSetAttrLists (gset1, PFGS_NORMAL3, (void **) &sn2, &sni2);
pfGetGSetAttrLists (gset1, PFGS_TEXCOORD2, (void **) &st2, &sti2);
pfGetGSetAttrLists (gset1, PFGS_COLOR4, (void **) &sc2, &sci2);
//******* Compute some helpful info - number of vertices per primitive.*******
if (prim_type == PFGS_QUADS)
 {num_verts = sides4 * num_prims;}
if (prim_type == PFGS_TRIS)
 {num_verts = sides3 * num_prims;}
if (prim_type == PFGS_TRISTRIPS)
 {
 for (int h = 0; h<num_prims; h++)
 {num_verts += lengths[h];}
 }
//This “if” encompasses all attributes’ elimination of indices since when
//one attribute is indexed all are.
if (svi2 != NULL)
{

 //********** Handle Vertices indexing.*********
 //Allocate memory so that all primitives’ vertices have separate memory locations.

 sv3 = (pfVec3 *)pfMalloc((int)num_verts * sizeof(pfVec3), arena);
 //Fill new array with all primitives’ independent vertices’ values.

 for (int g = 0; g<num_verts; g++)
 {
 sv3[g][0] = sv2[svi2[g]][0];
 sv3[g][1] = sv2[svi2[g]][1];
 sv3[g][2] = sv2[svi2[g]][2];
 }

 //Reassign vertices to pfGeoSet and nullify the indices parameter.
 pfGSetAttr (gset1, PFGS_COORD3, PFGS_PER_VERTEX, sv3, NULL);

 //****Next, the rest of the attributes’ indices arrays are eliminated similarly****

Figure 19: Example of Obtaining and Modifying pfGeoSet Data

81

1. Explodable Format Conversion Algorithm

a. Elimination of Indexing

When the explosion function is first called, it gathers information about the

pfGeoSet it has been passed using the Performer functions described above. Next, it

determines if the vertices array is indexed. If this indexing exists then by Performer’s

pfGeoSet definition rules, all other attribute’s arrays are indexed as well. Indexing is

mainly used to save memory in that it allows primitives that have common vertices with

other primitives of the same pfGeoSet to share the same memory locations for each of those

vertices. However, in order to break up the pfGeoSet into its polygons and make them move

independently to create the explosive effect, this indexing must be eliminated which is the

next task the algorithm performs. This removal of indexing first entails creating a new array

of values for each of the pfGeoSet’s attributes where each array is large enough to hold the

values dictated by its corresponding attribute’s binding type (also equal to the number of

indices in the index array for the attribute at hand). For example, if the normals are bound

per primitive then the normals values’ array is defined to be large enough to hold a separate

normal value for each primitive. The next step to eliminating indexing is to assign each of

these arrays values from their original corresponding arrays indexed by the their lists of

matching indices. Finally, the pfGeoSet is “reset” using the function pfGeoSets which

accepts the same parameters as its counterpart, pfGetGSetAttrLists, including an additional

binding argument. Thus, modification to the pfGeoSet is performed by calling this function

for each of the four attributes, vertices, normals, textures, and colors, and included in each

call is the new expanded array of values for the corresponding attribute and the value of

NULL as a filler for the index array argument. Figure 19 presents an example of obtaining

general information regarding a pfGeoSet, how this information is used, and how indexing

of the vertices’ positions array is eliminated.

80

a function is also provided for obtaining the amount of vertices that are contained in each

tristrip or linestrip primitive that make up a pfGeoSet, since a pfGeoSet may contain

multiple strip primitives of differing sizes. There are other “get” functions, but they are not

applicable to the explosion routine.

The compliment to the “get” routines are the “set” functions. These are important,

because once the conversion algorithm deciphers the construction properties of the

pfGeoSet, it performs necessary conversion calculations and then uses the set functions to

redefine the pfGeoSet permanently - completing the conversion to explodable format. The

“set” routines allow a program to reassign all of the parameters mentioned in the preceding

paragraph. However, the arrays are not modified as easily as the other pfGeoSet attributes.

When the explosion function’s conversion algorithm needs to expand an array in order to

hold more data (e.g., to eliminate indexing - a concept explained in the next section), a new

array of the same type must be created with enough memory allocated to hold all of the

values. This array is then assigned these values and the pfGeoSet is consequently “reset”

with this new array.

The concepts regarding Performer’s “get” and “set” functions presented in this

section are all vital to the operation of the explosion function. They are of particular

importance to the explodable format conversion algorithm within this file. While a general

description of these functions has been furnished in this section, their specific use is

outlined in Section B.

B. EXPLOSION FUNCTION DETAILS

The explosion function is comprised of two major algorithms. The first sequence of

commands involves obtaining information regarding the pfGeoSet parameter and then

converting it, if necessary, to explodable format. The latter part of the function computes

the movement of the polygons since the last call to the function using physically-based

concepts that include ballistic motion, force direction, and object rotation about an axis that

is normal its force vector.

79

purpose of call_num is to inform the explosion routine when the explosion has completed

- after 150 calls.

2. Performer pfGeoSet Functions

Although the function is provided with the above outlined parameters, it also needs

to have access to information related to the construction of the pfGeoSet parameter

particularly in the explodable format conversion part of the function. Performer provides a

set of “get” routines related to pfGeoSets which supply this data. Specifically, they provide

information regarding the object’s positions of vertices, normals’ values and binding (per

primitive, per vertex, or overall), texture coordinates and binding, and color’s RGBA

values and binding. In addition, if the values of these attributes which are stored in an array

are indexed, then the indices which are also stored in an array may be obtained as well.

Examples of calls for such information are as follows:

pfGetGSetAttrLists(gset1, PFGS_NORMAL3, (void**)&sn2, &sni2);

col_bind = pfGetGSetAttrBind(gset1, PFGS_COLOR4);

In the first example, pfGetGSetAttrLists returns the array of values for the normals of the

pfGeoSet gset1 in the variable sn2 and the array of indices to the normals’ values if it exists

(otherwise NULL is returned), in the variable sni2. This same function is used to obtain the

values (and indices) of the vertices, colors, and texture mapping coordinates. The arrays

returned for each of these attributes are composed of Performer’s type pfVec3 or pfVec4

structures. PfVec3 is used for vertices, texture coordinates, and normals since it is a

structure holding floating point values for the X, Y, and Z components of these attributes.

PfVec4 is used for colors since it too holds floating point values, but for the RGBA

components of the colors. Thus, every position in an array holds either a three or four

component structure. In the second example, pfGetGSetAttrBind returns gset1’s color’s

type of binding in the variable col_bind. Furthermore, additional “get” functions exist for

obtaining the type of primitive (points, lines, linestrips, triangles, tristrips, and quads) that

composes a pfGeoSet as well as the amount of primitives included in the object. In addition,

78

direction, and ballistic motion, all of which will be explained later in this chapter. As just

mentioned, an object fully blows up by calling this function repeatedly until the explosive

motion has ceased - this function ends all such motion after it has been called 150 times.

1. Function’s Parameters

Since the explosion routine has to be continually called for the same pfGeoSet, the

function’s parameters are very important. In other words, users incorporating the function

must take care to ensure that the parameters passed in for a particular pfGeoSet are those

that belong to this object, especially if many explosions are occurring at the same time. The

function’s prototype is defined as follows (variable types are in italics and pfVec3 is a

structure holding three float values):

blowup (float force,int &call_num,pfGeoSet *gset1,pfVec3 *Vel,
doubledeltatime,pfVec3where);

The arguments force, Vel, and where are all needed for the motion equations. Force is the

initial force inflicted on the object at the point of impact. Vel is an array holding the

previous call’s calculated velocities specified in X, Y, and Z components for each of the

primitives of the pfGeoSet (except for in the first call where the initial velocity is

computed). The velocity array is important, because the function employs ballistic motion

equations which need the previous call’s velocities for each of the primitives of a pfGeoSet

in order to compute the new locations of each polygon. Thus, the array passed in must be

large enough to hold velocity information for all primitives of a pfGeoSet. The last of the

motion equations’ parameters, where, contains the location of the weapon’s impact on the

pfGeoSet. The rest of the arguments include a pointer to the pfGeoSet that has been struck,

gset1; a time variable which contains the time it took the calling program to cycle through

its last simulation loop, deltatime; and a variable that specifies the number of times the

function has been called for the pfGeoSet pointer parameter, call_num. Call_num is

particularly important for two reasons. The first reason is that the motion equations require

that the instantaneous velocity be calculatedonly the first time the function is called per

pfGeoSet. Thus, this argument indicates when this particular call has occurred. The other

77

VI. EXPLOSIONS

During times of war, weapons are continually being fired and are consequently

impacting the terrain, objects, and humans. Objects when struck by a significant force burst

into many fragments. However, many real-time virtual battlefield simulators only represent

such a stricken entity with an animated flash followed by a “dead model” representation.

Examples of dead models include a blackened building, a bent over tree, or a tank with a

dipped turret. But, only modeling a “killed” object by immediately switching the “alive”

entity with a “dead” one detracts from the realism of the synthetic battlefield.

As stated previously, explosive effects have been created for NPSNET, but they run

in versions preceding the incorporation of Performer. Taking advantage of Performer’s

ability to optimize a simulation’s performance on Silicon Graphics systems means that all

geometry within the simulation must be made compatible with this toolkit’s low level

geometry (pfGeoSets). Performer provides routines for converting several common

geometric formats to that of Performer’s. Therefore, all objects read into NPSNET are

converted to Performer’s geometric format and thus, it was our goal to design an algorithm

that has the ability to explode any object that Performer is capable of rendering.

A. INTRODUCTION TO THE EXPLOSION FUNCTION

In general, we wrote a function that accepts as its parameter a pointer to a pfGeoSet

and retrieves the necessary information about the pfGeoSet in order to tear it apart into its

polygon primitives. These individual primitives are then used to create a blowing up effect

due to some impact the object sustained. However, often times the polygons are not readily

accessible and therefore have to be converted to an “explodable format -” a task this

function also performs. An example of where this transformation is needed is when sharing

of vertices’ memory locations among primitives is incorporated. Since the explosion occurs

by calling this function multiple times, the pfGeoSet is converted only once so that it is

permanently changed. The motion of the polygons is physically-based using equations that

incorporate force direction, rotation of the object about the axis normal to its force

76

C. DESTRUCTIBLE ENTITY PDU SUMMARY

The Destructible Entity PDUs are indeed a viable solution to improving the realism

of the terrain within DIS simulators. Our performance results indicate that these PDUs can

be handled by a real-time distributed system without hampering the overall

communications process. In addition, our implementation of these packets demonstrates

how destructible entity information can be incorporated relatively easily within a

distributed system. However, there are other conditions that must be taken into account to

properly incorporate these PDUs. Examples include the one provided earlier in this

document regarding examining Detonation PDU munitions’ fields to determine just how

much damage a detonation caused or when a Deletion PDU should be transmitted. These

issues and others need to be addressed and implemented. Although, we have yet to

incorporate such events, we have developed a testbed which provides both written and

graphical verification of destructible entity communications. Thus, this testbed can be

further used to test other such issues or events relating to destructible entities.

75

3. Destructible Entity PDU Performance

We tested the transmission of Destructible Entity PDUs in terms of how they affect

Ethernet capacity. The first test involved two hosts continuously sending Create/Modify

PDUs at a rate of 30 packets per second meaning that a total of 60 Create/Modify PDUs

were traversing the Ethernet at any one time. This network load used only 1.5% of the total

Ethernet capacity. Next we added a third host to this simulation that continuously sent

Request ID PDUs every ten seconds to which the other two hosts responded by transmitting

Reply ID PDUs. In addition, if the new host determined from the receipt of Reply ID PDUs

that it was missing data regarding destructible entities, it sent a Request Object PDU to

which the initial two hosts responded with Reply Object PDUs. This particular

circumstance (object request and replies) only occurred when the third host first joined the

simulation. Even though Request ID and Reply ID PDUs were traversing the network every

ten seconds in addition to the 60 Create/Modify PDUs that were being sent to the network

every second, the effect on the Ethernet capacity did not change from that of the first test.

Our next two tests involved sending 120 Create/Modify packets per second on to

the Ethernet. Two hosts were used with each sending 60 of these PDUs per second. With

just these packets on the network only 2.2% of the Ethernet capacity was used. Again, we

added a third host that interacted with the first two hosts exactly as described in the previous

paragraph’s second test. As expected, the amount of Ethernet capacity used remained

constant with this addition as it had in the comparison of the first two tests above.

The results of our tests indicate Destructible Entity PDUs are capable of being

incorporated within a real-time distributed simulator without hampering the simulator’s

performance. This statement is supported by the fact that our hosts sent PDUs on to the

network at optimal real-time rates and only used a very tiny portion of the Ethernet’s

capacity. Furthermore, the PDU transmission rates we incorporated are higher than what

would occur in many distributed simulator scenarios meaning that even less of the

network’s capacity would end up being used.

74

make the terrain appear more realistic in future applications. (For a complete description of

the Detonation PDU see [IST93].)

The final way in which the terrain manager communicates world changes to the

participants of the simulation is by sending a Deletion PDU for an object that already exists.

This PDU transmission was implemented in the form of a key punch in order to ensure

proper handling of this packet. When a user operating the terrain manager pushes the “D”

key, the terrain manager calls sendDel with a variable of the type Del_DestEnt (as defined

in Figure 14) which updates its host matrix to reflect that a deletion has occurred (sets the

object’s appearance field value to zero) and transmits the Deletion PDU. Hosts on the

network accept this PDU and call updateDel to process it.

Overall, the terrain manager and hosts are able to interact correctly using all six

Destructible Entity PDUs. This proper acceptance and processing of the PDUs is verified

by printing host matrices of simulation participants (including the terrain manager) using

the print functions provided by the destructible entity functions file. In addition, the

modeler’s grid also verifies this correct interaction. During each cycle through the main

simulation loop of the program a call is made to a draw process. This process draws the grid

and places any existing destructible entities (using icons) at locations on the grid that

correspond with the entities’ positions on the terrain database. In order to know which

entities’ it should represent, the draw procedure calls get_DestEnt to obtain its own copy

of the host matrix. It then searches the entire matrix and displays existing entities using the

location fields within the entities’ nodes. But, if the draw process finds an entity whose

appearance value is zero, it does not display that entity since it has been deleted. Therefore,

it was by way of both of these displays that we were able to confirm that our

implementation transmitted, accepted, and processed the Destructible Entity PDUs

correctly. Furthermore, to support our belief that these PDUs are capable of being

implemented within a real-time simulator we conducted a series of performance tests with

them as described in the next section.

73

hit the ground or came close enough to cause damage to the terrain. If one of these two

results occurred, then the terrain manager sends a Create/Modify PDU by calling sendCM

with a parameter of type C_M_DestEnt (as defined in Figure 14) that it has filled. Part of

the parameter’s field values are copied from the Detonation PDU. These include the

location of the detonation and the site and host IDs of the player that sent the PDU. The rest

of the variable’s values, with the exception of the object ID and sequence number which

are uniquely assigned in sendCM, are simply hard coded and indicate a default crater was

formed. This terrain manager and host interaction is illustrated in Figure 18.

In order to eliminate the use of constantly identical hard coded values, the

Detonation PDUs’ fields describing the munitions used would have to be evaluated to

accurately determine the effects that the detonations had on the terrain or other static

objects. After such determinations are made, the parameter’s fields which ultimately

become the Create/Modify PDU fields would be filled with data that describes these effects

well enough that the receiver of the PDU would be capable of displaying the same

detonation result. This type of evaluation needs to be incorporated, for it will definitely

T
er

ra
in

 M
an

ag
er

H
ost

Detonation
PDU

updateCM

Figure 18: Creation or Modification of a Destructible Entity

Create/Modify PDU

if detonation hit ground

72

data. Again, the terrain manager responds with a Reply Object PDU via a call to

sendReplyObj, and finally, the host updates its host matrix by calling updateTerrain. A host

not only calls sendReqID when it first enters the simulation, but also periodically during

the simulation - approximately every minute - to ensure that the state of its terrain is always

consistent with the terrain manager’s world. Therefore, this full sequence of events which

is graphically displayed in Figure 17 may occur many times during the simulation.

After a host is initialized, it begins to periodically shoot missiles one at a time.

When a missile blows up, the owning host sends a Detonation PDU. Only the terrain

manager in this implementation reads and interprets Detonation PDUs. Therefore, when the

terrain manager receives this packet, it examines its result field to determine if the missile

T
er

ra
in

 M
an

ag
er

H
ost

Request ID

PDU

Reply ID

PDU

if Request != Reply

Request Object PDU

Reply Object
PDU

updateTerrain()

Figure 17: Destructible Entity Request and Reply PDU Sequence

71

m. updateTerrain()

This function receives a Reply Object PDU containing retransmitted PDUs

and updates the host matrix with each of these PDUs in the same manner that updateCM

does.

n. printMatrix() and All Print Routines

All of the print routines contained within the destructible entity functions

file are provided for debugging purposes. PrintMatrix displays all of the destructible

entities information (essentially all of the fields that compose a Create/Modify PDU) in

host ID numerical order from head to tail. In between the start of each host and the start of

the one immediately following are the entities belonging to the first host displayed from

head to tail. For example, if printMatrix were to print the list as it appears in Figure 16 it

would display host 1 with the data of Object IDs 2, 3, 5, and 30 following in that order and

then host 2 would be displayed with the data of Object ID’s 25 and 10 following. The

remaining print functions, printCM, printDel, printReqID, printReqObj, printRepID, and

printRepObj, display all of the fields of their respective PDU arguments.

2. Player and Terrain Manager Interaction

Our implementation of a terrain manager interacting with participating hosts using

the 2D modeler previously described begins by starting the terrain manager’s copy of the

modeler. The terrain manager must be started first to ensure that it witnesses all of the

simulation’s world events. Hosts may be brought on line at any time thereafter. To prepare

for destructible entity processing, both the terrain manager and participating hosts initially

call readhostfile to read in the host and site IDs in order to set up the host matrix. In

addition, when a host first enters the simulation, it immediately sends a Request ID PDU

by calling sendReqID to determine if it has missed any transmitted Destructible Entity

PDUs. Upon receiving a Reply ID PDU from the terrain manager, the host calls

compareReplyID which evaluates the PDU and consequently sends a Request Object PDU

by calling sendReqObj if it determines that the host is indeed missing destructible entity

70

k. updateDel()

This function updates the host matrix with information contained within a

Deletion PDU. The update procedure is exactly the same as the one implemented in

updateCM. One additional assignment, however, is implemented when the PDU’s

information is copied into the proper node. This assignment involves replacing the

appearance field value of the node with zero to indicate that the object has been deleted

since the Deletion PDU does not contain this field for copying. In addition, it should be

mentioned that even if the deleted object does not exist in the host matrix (for whatever

reason), the data is copied into the list (in the same way that a Create/Modify PDU’s data

is). The reason that this deleted object is placed in the list is so that a host can decipher what

information regarding this entity should be displayed in case PDUs related to it arrive out

of sequence. (e.g. If the Deletion PDU’s sequence number is five, but a Create/Modify PDU

for the same object with a sequence number of four arrives after the Deletion PDU, the

receiving host would know not to display the object.)

l. compareReplyID()

CompareReplyID accepts a Reply ID PDU and determines if the host matrix

is missing destructible entity information regarding any of the hosts involved in the

simulation. The function compares every participating node’s maximum sequence number

contained within the PDU with the corresponding maximum sequence number in the host

matrix (the sequence number at the head of each host’s list). If during each host’s

comparison the sequence number in the PDU is greater than the one for the same host in

the host matrix then a Request Object PDU is sent using the sendReqObj function

previously described. If a node in the PDU does not exist in the host matrix then a new node

place holder is created for that host in the matrix and sendReqObj is called in an effort to

obtain all Destructible Entity PDUs sent regarding the new host.

69

objects are only limited to the sequence number boundaries. The other limiting fields need

to be properly incorporated in future improvements to this code perhaps by incorporating

the other fields included in the first parameter used to call this function.

i. sendReplyObj()

SendReplyObj searches for previously transmitted PDUs recorded in the

responding host’s matrix that meet the condition fields of the Request Object PDU

parameter used to call this function. The search initially involves finding the owning host’s

list. Once located, the list is then traversed testing each node against the boundaries set in

the Request Object PDU. Any node that satisfies an “And” of all of these boundaries is

copied and attached to a Reply Object PDU, and upon completion of the traversal of the list

the PDU is transmitted.

j. updateCM()

UpdateCM takes in a Create/Modify PDU and updates the host matrix. The

update procedure is the same as described in the sendCM section with the exception that

the PDU received already contains the proper object ID and sequence number, meaning that

the assignment of these fields that takes place in sendCM is not performed in this function.

However, this algorithm does not assume that the incoming PDU contains the highest

sequence number transmitted regarding the owning host. If the number is not the highest

then the owning host’s list is updated in one of two ways depending on whether the data

within the PDU refers to a new object or to a modification of an already existing entity. If

the object is new then the PDU’s information is placed in a new node added to the tail of

the list. On the other hand, if the PDU contains modification data, then the object’s node in

the list is just overwritten with this new information as long as the new sequence number

is indeed higher than this node’s. But, if the PDU’s sequence number is the highest of those

existing in the owning host’s list, then its information is placed at the head of this list as

presented in the section describing sendCM.

68

just as sendCM sends a Create/Modify PDU, this function puts a Deletion PDU out on to

the network.

f. sendReqID()

SendReqID sends a Request ID PDU which includes all of the hosts and

their highest sequence numbers contained in the host matrix. This function simply traverses

the host list and copies the sequence number from the head of each individual host’s lists

(since the highest sequence number is always maintained at the head of these lists) into the

PDU. In addition, the count field of the Request ID is filled with the number of hosts

contained within the PDU.

g. sendReplyID()

This function sends a response to a Request ID PDU in the form of a Reply

ID PDU. Since the format of this packet is identical to that of the Request ID PDU,

sendReplyID fills this response PDU in the same way that sendReqID fills its

corresponding PDU.

h. sendReqObj()

SendReqObj fills in the boundary fields of a Request Object PDU and sends

this packet in order to request previously transmitted Destructible Entity PDUs regarding

one specific host. This function must be called with two parameters. The first is the hosts’s

highest sequence numbered node contained in the calling player’s host matrix and the

second is the maximum sequence number received by the player via a Reply ID PDU for

that host. Thus, these two arguments are used by sendReqObj to fill the minimum and

maximum sequence number fields of the Request Object PDU. This function also takes into

account the possibility that the host is new to the requesting player and thus, if this is the

case, the minimum sequence number field is assigned the number one in an effort to request

all Destructible Entity PDUs sent regarding this host. The remaining boundary fields of the

Request Object PDU are presently just assigned hard coded values so that requests for

67

d. sendCM()

In general, sendCM receives a parameter of type C_M_DestEnt (illustrated

in Figure 14) and sends a Create/Modify PDU based on the fields of that argument.

However, prior to transmitting the PDU, this function determines if the object at hand

(parameter) is new and if so, it assigns the entity a unique object ID. The function knows

that the object is new if the parameter’s object ID field equals zero. After this assignment,

sendCM searches the host matrix for the owning host’s list of objects. Since the destructible

entity file of functions maintains the host matrix such that the first object in a host’s list is

the one with the highest sequence number for that host, this algorithm assigns the PDU a

sequence number one higher than the one at the head of its owning host’s list. At this point,

the function searches the proper host’s list for an entity with the same object ID as the

parameter’s. If a match is found (parameter is a modification) the matching list node is

overwritten with the new data and placed at the head of the host’s list since it now contains

the highest sequence number. If on the other hand, the object is new, then a new node is

created, filled with the new information, and inserted at the head of the host’s list.

Furthermore, if the first node’s padding field’s value is -1 then that node is simply

overwritten with the parameter’s values since this padding value signifies a host place

holder (host does not own any destructible entities as of yet) ensuring that the padding value

is changed to zero. Finally, after the matrix has been updated, the Create/Modify PDU is

sent.

e. sendDel()

This function operates identically to sendCM except that it handles the

deleted destructible entities. An object ID is not assigned since a deletion indicates that the

object already exists. However, the sequence number assignment and insertion of the entity

into the host matrix are performed in the same way as they are in sendCM with one

important exception. When the object is inserted in the proper position in the matrix, the

object’s appearance field is assigned zero to signify that the entity has been deleted. Finally,

66

c. get_DestEnt()

This function simply returns a copy of the entire host matrix. Get_DestEnt

is useful to a system’s draw process in that this process can obtain and scan its own copy

of the host matrix and determine what destructible entities need to be displayed.

Site 36Host 1 Host 2 Site 36

. . .
Sequence #5
Object ID 2

Appearance 1

.Object Type 1

Sequence #2
Object ID 25
Object Type 2...
Appearance 5

...

Sequence #3
Object ID 5
Object Type 2

...
Appearance 4

Sequence #1
Object ID 1
Object Type 1

Appearance 1
...

...

Sequence #4
Object ID 30
Object Type 3

Appearance 3

Sequence #1
Object ID 10
Object Type 1

Appearance 1
...

...

Figure 16: Example Host Matrix

.

65

b. readhostfile()

Readhostfile reads in the list of host and site IDs from a file and builds the

host matrix with this data (calls mallocTotalObjsNode to create list nodes for each host).

The function returns a one (true) if it was successfully able to read the file.

//Header file for all destructible entity related information (cont.).
//*****************************Prototypes******************************
//*****Allocates space for matrix .
TotalObjsNode *mallocTotalObjsNode();
//*****Reads in all hosts from file and builds empty matrix of hosts.
int readhostfile();
//*****Provides a copy of the destructible entity matrix.
TotalObjsNode * get_DestEnt();
//*****Creates Create/Modify PDU from data sent via the parameter, transmits
//*****the PDU, and updates matrix with the information sent.
void sendCM (C_M_DestEnt);
//*****Creates Deletion PDU from data sent via the parameter, transmits
//*****the PDU, and updates matrix with the information sent.
void sendDel (Del_DestEnt);
//*****Sends a Request ID PDU which includes all hosts in current matrix.
void sendReqID ();
//*****Sends a Request Object PDU.
void sendReqObj(int);
//*****Sends a Reply ID PDU which includes all hosts in current matrix.
void sendReplyID();
//*****Sends a Reply Object PDU.
void sendReplyObj(RequestObjDestEntPDU *);
//*****Adds Create/Modify PDU information to matrix.
void updateCM(CreateModDestEntPDU *pdu);
//*****Adds Delete PDU information to matrix.
void updateDel(DeleteDestEntPDU *pdu);
//*****Compares information in Reply ID PDU and sends a Request Object PDU.
void compareReplyID(ReplyIDDestEntPDU *pdu);
//*****Updates matrix with previously sent PDUs contained in Reply Object PDU.
void updateTerrain(ReplyObjDestEntPDU *pdu);
//*****Prints all fields in matrix.
void printMatrix ();
//*****Routines below print all fields of PDU parameters.
void printCM (CreateModDestEntPDU *pdu);
void printDel (DeleteDestEntPDU *pdu);
void printReqID(RequestIDDestEntPDU *pdu);
void printReqobj (RequestObjDestEntPDU *pdu);
void printRepID (ReplyIDDestEntPDU *pdu);
void printRepObj (ReplyObjDestEntPDU *pdu);
//************************End Prototypes*******************************

Figure 15: Functions that Support the Use of Destructible Entity PDUs

64

its host matrix. The function is also employed by the node to add additional late joining

hosts to its matrix.

dest_ent_seq_num;
object_id;
dest_ent_object_type;
dest_ent_object_mat;
padding16;
dest_ent_location;
dest_ent_orientation;
dest_ent_height;
dest_ent_length;
dest_ent_width;
dest_ent_appearance;

//Header file for all destructible entity related information.
//******************************Structures****************************
//*****Structure for applications to use to supply data to be transmitted in a
//*****Create/Modify PDU.
typedef struct {

} C_M_DestEnt;

//*****Structure for applications to use to supply data to be transmitted in a
//****Deletion PDU.
typedef struct {

} Del_DestEnt;

//*****Structure for matrix that contains all hosts and their created,
//*****modified, or deleted objects. CreateModDelObjNode is a structure
//*****that resides in the pdu.h file in conjunction with the Reply Object PDU.
//*****The matrix is global to the entire source code file.

typedef struct {

} TotalObjsNode;

//***************************end Structures*****************************

SequenceNum
ObjectID
ObjectType
ObjectMat
short
EntityLocation
EntityOrientation
HeightZ
LengthX
WidthY
Appearance

SequenceNum
ObjectID
EntityLocation

dest_ent_seq_num;
object_id;
dest_ent_location;

CreateModDelObjNode
struct total_objs_node

*object;
*nexthost;

Figure 14: Structures that Support the Use of Destructible Entity PDUs

63

simulation are not permitted to send Create/Modify, Deletion, Reply ID, or Reply Object

PDUs. Only the Terrain Manager responds to hosts’ requests with the two types of reply

PDUs and transmits Create/Modify and Deletion PDUs. The terrain manager on the other

hand, does not participate as a player - it does not shoot missiles nor does it request periodic

updates of destructible entities. However, both the players and the terrain manager display

the same state of the world on their 2D grids.

The general differences just described between the terrain manager and the

participating hosts are handled by calls to the destructible entity functions file. Therefore,

the specific features of this file and how such simulators interact with the file’s functions

are described in the next section with a more precise description of the terrain manager’s

and hosts’ interaction with these functions following.

1. Destructible Entity Functions File

The destructible entity functions file not only contains functions that support the use

of Destructible Entity PDUs, but it also provides a matrix structure, a doubly linked list, for

keeping track of all destructible entities owned by each host. The matrix is composed of a

linking of all the hosts participating in the simulation and from each of these hosts stems a

list of the destructible entities for which the host is responsible. Each of the destructible

entity nodes in the hosts’ lists contain the fields of the Create/Modify PDU with the

exception of the PDU Header. The set of functions within this file are primarily used for

sending Destructible Entity PDUs and for comparing and updating the host matrix. Figure

14 displays the structures employed and Figure 15 contains all of the functions’ prototypes.

In addition, Figure 16 visualizes the host matrix structure, TotalObjsNode, defined in

Figure 14. And finally, the sections below further describe the routines defined in Figure

15 and the file’s overall handling of the host matrix.

a. mallocTotalObjsNode()

This function allocates space for a host in the matrix and returns a pointer to

that area of memory. It is used by a node when it first enters the simulation in order to build

62

Field Size
(bits)

Field Title Description

96 PDU Header 8-bit enumeration Protocol Version
8-bit unsigned integer Exercise ID
8-bit enumeration PDU-Type
8 bits unused Padding
32-bit unsigned integer Time Stamp
16-bit unsigned integer Length
16 bits unused Padding

16 Padding 16-bits unused
16 Count 16-bit unsigned integer

n*640

(n = number
of

retransmitted
PDUs)

Create/Modify
Parameters

Sequence Number:
16-bit unsigned integer Site ID
16-bit unsigned integer Host ID
16-bit unsigned integer Sequence Number
16 bits unused Padding

16-bit unsigned integer Object ID
16-bit unsigned integer Object Type
16-bit unsigned integer Object Material
16 bits unused Padding

Entity Location:
64-bit floating point X
64-bit floating point Y
64-bit floating point Z
Entity Orientation:
32-bit floating point Psi
32-bit floating point Theta
32-bit floating point Phi
Height:
32-bit floating point Z-Minimum
32-bit floating point Z-Maximum
Length:
32-bit floating point X-Minimum
32-bit floating point X-Maximum
Width:
32-bit floating point Y-Minimum
32-bit floating point Y-Maximum

32-bit enumeration Appearance

Table 11: Reply Object PDU

61

(2) Object ID.

(3) Object Type.

(4) Object Material.

(5) Location.

(6) Orientation.

(7) Height.

(8) Length.

(9) Width.

(10) Appearance.

B. DESTRUCTIBLE ENTITY PDU IMPLEMENTATION

Our implementation of the above PDUs occurs within a previously existing 2D grid

modeler which periodically launches a missile, models its flight, determines when and

where it hits the ground or an object, and consequently sends a DIS Detonation PDU

[IST93] to the network. The modeler’s displayed grid represents the X and Y world

coordinates of a terrain database. In addition, besides transmitting DIS PDUs, the modeler

also receives and processes DIS packets. One such packet is the Entity State PDU which is

used to communicate the existence and state of all entities other than destructible entities

[IST93]. By having the ability to process these packets, the modeler is able to not only

represent the presence of its host’s objects including the tracking of the missile’s flight, but

also other nodes’ entities by placing icons at the X and Y coordinates of the grid according

to where they actually exist within the world.

The modeler’s ability to communicate with the network and display existing objects

in this way, made it a logical place to implement Destructible Entity PDUs and verify

proper communications between a terrain manager and participating hosts. Both the terrain

manager and the “players” operate under a copy of this modeler which has been adjusted

to communicate with a file of destructible entity processing functions. Basically, the

players’ modelers operate as just described with the added feature of having the ability to

receive, process, and transmit Destructible Entity PDUs. However, the participants in the

60

a. PDU Header - The standard DIS header.

b. Count- Specifies the number of PDUs sent (Create/Modify or

Deletion) regarding one host’s destructible entities.

c. Create/Modify Parameters- The following fields are part of this

structure and are a duplication of the Create/Modify PDU’s fields (which also encompass

the fields of the Deletion PDU). The fields are described in the Create/Modify PDU section.

In addition, a variable number, n, of these structures may be attached to the Reply Object

PDU depending on how many packets related to a particular host need to be retransmitted.

(1) Sequence Number.

Field Size
(bits)

Field Title Description

96 PDU Header 8-bit enumeration Protocol Version
8-bit unsigned integer Exercise ID
8-bit enumeration PDU-Type
8 bits unused Padding
32-bit unsigned integer Time Stamp
16-bit unsigned integer Length
16 bits unused Padding

64 Minimum Sequence
Number

16-bit unsigned integer Site ID
16-bit unsigned integer Host ID
16-bit unsigned integer Sequence Number
16 bits unused Padding

64 Maximum Sequence
Number

16-bit unsigned integer Site ID
16-bit unsigned integer Host ID
16-bit unsigned integer Sequence Number
16 bits unused Padding

32 Minimum Time 32-bit unsigned integer
32 Maximum Time 32-bit unsigned integer
192 Minimum Geo-

graphic Bounds
64-bit floating point X
64-bit floating point Y
64-bit floating point Z

192 Maximum Geo-
graphic Bounds

64-bit floating point X
64-bit floating point Y
64-bit floating point Z

Table 10: Request Object PDU

59

c. Maximum Sequence Number - Specifies the latest transmitted PDU

needed regarding a specific host; thereby requesting all PDU’s previously transmitted

regarding one host from the minimum sequence number to the maximum sequence number

inclusive.

d. Minimum Time - Specifies the oldest PDU (in terms of time)

regarding a specific host that the requesting host wants.

e. Maximum Time- Specifies the youngest PDU (in terms of time)

regarding a specific host that the requesting host wants; thereby requesting all PDU’s

previously transmitted regarding one host from the minimum time to the maximum time

inclusive.

f. Minimum Geographic Bounds- Specifies the minimum bounds in

world coordinates within which a retransmitted PDU’s destructible entity must lie.

g. Maximum Geographic Bounds- Specifies the maximum bounds in

world coordinates within which a retransmitted PDU’s destructible entity must lie; thereby

requesting all PDU’s previously sent regarding one host from the minimum bounds to the

maximum bounds inclusive.

6. Reply Object PDU

The Reply Object PDU is used to send a list of previously transmitted PDUs

regarding a specific host in response to the Request Object PDU. The PDUs contained

within this packet match an “And” of the bounding fields within the Request Object PDU.

Upon receipt of a Reply Object PDU the requesting host updates its world’s state and its

table used for recording the receipt of Destructible Entity PDUs.

58

c. Maximum Sequence Number List -Contains a list of all hosts and

the maximum sequence number issued regarding each host that the responding node (in

most cases the terrain manager) has received.

5. Request Object PDU

This PDU is used by a participant to request Create/Modify or Deletion PDUs that

it never received regarding an individual owning host - one Request PDU is sent per

owning host’s information needed. The requesting node indicates the PDUs desired by

supplying bounds which when “Anded together” provide the condition that all

retransmitted PDUs must match. Thus, the responding node replies with packets that satisfy

an “And” of all of the fields outlined below (except a.). The system format of these fields

is presented in Table 10.

a. PDU Header - The standard DIS header.

b. Minimum Sequence Number - Specifies the earliest transmitted

PDU needed regarding a specific host.

Field Size
(bits)

Field Title Description

96 PDU Header 8-bit enumeration Protocol Version
8-bit unsigned integer Exercise ID
8-bit enumeration PDU-Type
8 bits unused Padding
32-bit unsigned integer Time Stamp
16-bit unsigned integer Length
16 bits unused Padding

16 Count 16-bit unsigned integer
16 Padding 16 bits unused

n*64

n= # of hosts

Maximum Sequence
Number List

16-bit unsigned integer Site ID
16-bit unsigned integer Host ID
16-bit unsigned integer Sequence Number
16 bits unused Padding

Table 9: Reply ID PDU

57

c. Maximum Sequence Number List- Contains a list of all hosts and

the maximum sequence number issued regarding each host that the requesting node has

received.

4. Reply ID PDU

This PDU is used to respond to a host’s transmission of a Request ID PDU. It

contains a list of the last transmitted terrain state changes that occurred on each of the

participating nodes within the simulation. The PDU indicates these latest changes by only

including the highest sequence number sent regarding each owning host. A node receiving

this information compares each host’s sequence number in this PDU with the

corresponding values in its destructible entity table and determines if there were any PDUs

that it did not receive which now need to be requested. The fields employed in the Reply

ID PDU are described below and in Table 9.

a. PDU Header - The standard DIS header.

b. Count- Specifies the number of hosts’ maximum sequence numbers

contained in the PDU.

Field Size
(bits)

Field Title Description

96 PDU Header 8-bit enumeration Protocol Version
8-bit unsigned integer Exercise ID
8-bit enumeration PDU-Type
8 bits unused Padding
32-bit unsigned integer Time Stamp
16-bit unsigned integer Length
16 bits unused Padding

16 Count 16-bit unsigned integer
16 Padding 16 bits unused

n*64

n= # of hosts

Maximum Sequence
Number List

16-bit unsigned integer Site ID
16-bit unsigned integer Host ID
16-bit unsigned integer Sequence Number
16 bits unused Padding

Table 8: Request ID PDU

56

3. Request ID PDU

The Request ID PDU is sent by a host in order to find out if any modifications to

the terrain had taken place that it missed because it was late joining the simulation, it

“dropped out” for a period of time, or hardware faults occurred that prevented the host from

receiving terrain update information. The requesting node transmits a list of hosts’

maximum sequence numbers in which each number indicates the last destructible entity

information it has received in regards to these hosts. The node receiving this PDU responds

with a similar list of maximum sequence numbers it has recorded per participant. The

following list and Table 8 illustrate the fields used to communicate this data.

a. PDU Header- The standard DIS header.

b. Count -Specifies the number of hosts’ maximum sequence numbers

contained in the PDU.

Field Size
(bits)

Field Title Description

96 PDU Header 8-bit enumeration Protocol Version
8-bit unsigned integer Exercise ID
8-bit enumeration PDU-Type
8 bits unused Padding
32-bit unsigned integer Time Stamp
16-bit unsigned integer Length
16 bits unused Padding

64 Sequence Number 16-bit unsigned integer Site ID
16-bit unsigned integer Host ID
16-bit unsigned integer Sequence Number
16-bits unused Padding

16 Object ID 16-bit unsigned integer
16 Padding 16 bits unused
192 Entity Location 64-bit floating point X

64-bit floating point Y
64-bit floating point Z

Table 7: Deletion PDU

55

a. PDU Header - The standard DIS header.

b. Sequence Number- Incremented per owning host every time this

PDU is sent regarding that host. This value is included within a structure that also contains

the host and site IDs which are all attached to the outgoing PDU.

c. Object ID - Uniquely identifies the destructible entity.

d. Location- Identifies the location in world coordinates of the entity.

Field Size
(bits)

Field Title Description

96 PDU Header 8-bit enumeration Protocol Version
8-bit unsigned integer Exercise ID
8-bit enumeration PDU-Type
8 bits unused Padding
32-bit unsigned integer Time Stamp
16-bit unsigned integer Length
16 bits unused Padding

64 Sequence Number 16-bit unsigned integer Site ID
16-bit unsigned integer Host ID
16-bit unsigned integer Sequence Number
16 bits unused Padding

16 Object ID 16-bit unsigned integer
16 Object Type 16-bit unsigned integer
16 Object Material 16-bit unsigned integer
16 Padding 16-bits unused
192 Entity Location 64-bit floating point X

64-bit floating point Y
64-bit floating point Z

96 Entity Orientation 32-bit floating point Psi
32-bit floating point Theta
32-bit floating point Phi

64 Height 32-bit floating point Z-Minimum
32-bit floating point Z-Maximum

64 Length 32-bit floating point X-Minimum
32-bit floating point X-Maximum

64 Width 32-bit floating point Y-Minimum
32-bit floating point Y-Maximum

32 Appearance 32-bit enumeration

Table 6: Create/Modify PDU

54

a. PDU Header- The standard DIS Header.

b. Sequence Number- Incremented per owning host every time this

PDU is sent regarding that host. This value is included within a structure that also contains

the host and site IDs which are all attached to the outgoing PDU.

c. Object ID- Uniquely identifies the destructible entity.

d. Object Type - Identifies the name of the object - crater, building etc.

e. Object Material- Indicates what material to use to construct the

entity.

f. Location - Identifies the location in world coordinates of the entity.

g. Orientation- Specifies the yaw, pitch, and roll of the object.

h. Height - Specifies the minimum and maximum height of the entity

in body coordinates.

i. Length - Specifies the minimum and maximum length of the entity

in body coordinates.

j. Width - Specifies the minimum and maximum width of the entity in

body coordinates.

k. Appearance- Indicates via an enumerated type the specific

appearance of the object such as flaming, smoking, or burnt.

2. Deletion PDU

This PDU is used to convey to participants that a host deleted a destructible entity.

Hosts receiving the Deletion PDU are required to remove the object described from their

worlds and to record receipt of this PDU within their destructible entity tables or lists. The

fields listed below fully describe this PDU along with Table 7’s listing of the fields’

formats.

53

related to each player in regards to destructible entity creations, modifications, and

deletions is recorded. A “terrain manager” may also be incorporated to help manage the

terrain and these PDUs. A terrain manager’s main purpose is to maintain the state of the

common terrain, support queries from the “players,” and update late joining participants.

Thus, it is the terrain manager that communicates with the hosts via the Request and Reply

PDUs mentioned above. In addition, the terrain manager may be implemented such that it

handles issuing all Create/Modify or Deletion PDUs for all participants. Another option

that may be employed is to allow the owning host, the host where the action occurred, to

issue its own such PDUs. Overall, there are many ways to implement these packets from

incorporating several terrain managers (one per geographic area) to relying solely on the

participating nodes to maintain their own terrains and to keep each other informed and up-

to-date. However, the method of implementation is not nearly as important as the concept

that all DIS simulators know how to read, interpret, and send Destructible Entity PDUs

most especially when two or more distinct DIS applications are interacting with each other.

Therefore, the sections below describe how each of the Destructible Entity PDUs are to be

used and outline the exact format of the fields of each of the PDUs. Following this listing

an example of how we implemented these packets is presented.

1. Create/Modify PDU

This PDU is used to inform participants that another host created or modified a

destructible entity. Thus, the Create/Modify PDU indicates to receiving nodes that they

also must create this object or modify an entity (if it already exists) within their copy of the

world based on the information contained within the PDU’s fields. Additionally, the

receiving hosts must update their destructible entity tables or lists (as previously described)

to reflect receipt of this PDU. Descriptions of the Create/Modify PDU’s fields are presented

below with their exact system format following in Table 6.

52

changes) to late joining hosts or in the case of a system failure, to have access to the state

of the simulation previous to the interruption so that it may be restarted at that state. Thus,

we sought to implement a recording and transmission process for the state-of-the-world

[ZYDA93] using the PDUs developed for incorporating dynamic terrain features within

DIS environments. We feel that these PDUs, the Destructible Entity PDUs tentatively

approved for the DIS protocol version 3.0 [personal knowledge of the author], fully support

the networking criteria just described.

A. DIS VERSION 3.0 DESTRUCTIBLE ENTITY PDUs

Six Destructible Entity PDUs were developed for the DIS protocol version 3.0.

They include:

• Create/Modify PDU

• Deletion PDU

• Request ID PDU

• Reply ID PDU

• Request Object PDU

• Reply Object PDU

A destructible entity as it relates to these PDUs, or packets as they are sometimes

called, is any static object whose state is capable of changing due to some force inflicted on

it. Thus, not only are earthworks such as craters and berms included in this category, but

also changes to objects such as trees or buildings are communicated as well with these

packets. In general, these PDUs are used for recording and transmitting the state of the

terrain (including the state of static objects on top of the terrain). They convey to the

participating hosts in the simulation when a destructible entity has been created, modified,

or deleted. In addition, they are used by a node to ensure that its terrain’s appearance is

consistent with the rest of the simulators’ terrains. In order for a host to keep track of the

state of the world, the host must maintain a list or table where information it has received

51

V. NETWORKING DYNAMIC TERRAIN

Modeling dynamic terrain is crucial to simulating a realistic synthetic battlefield

environment. Terrain changes play an important role in decision making during times of

war in such circumstances as considering the idea of strategically constructing a berm(s) in

order to slow the enemy’s pursuit or building or destroying a bridge in an effort to get to

another part of the land or to stop an enemy’s advance respectively. In addition, craters

which impede the advancement of troops generously populate a war stricken area due to

fires/detonations that miss the intended target and strike the ground instead or due to a unit

destroying no longer needed protective berms. The above examples of war time

modifications to the terrain illustrate the importance of incorporating realistically modeled

terrain modifications within virtual battlefield simulators.

As previously described, such features have been incorporated in 3D DIS

simulators such as NPSNET; however, networking of the state of the terrain has yet to be

implemented using a standardized DIS protocol data unit (PDU) format. Networking is

essential to virtual battlefield simulations since this tool allows many players to interact

with the world simultaneously from distant areas; thereby providing remote military units

the opportunity to train together without having to relocate to a common location. Thus,

when players are interacting over a distributed system it is imperative that all changes

occurring in one player’s world also be reflected in all other player’s worlds. Networking

protocols provide support for this homogenous world. However, networking is a precarious

issue since a designer of a networked simulator must ensure that only the necessary

information is communicated to the hosts so as not to hamper the networks’s real-time

performance; while at the same time ensuring that enough non-system specific data is

provided so that any platform regardless of its hardware properties or limitations is able to

understand and reproduce an object’s appearance, geometry, and placement [WALT92].

Furthermore, another important feature that distributed systems must incorporate is a

recording process in order to provide update information (send previously transmitted state

50

49

The frame rates obtained were not a surprise considering those that had been

previously obtained from the Cloud Modeler. However, they did demonstrate the affect that

the total number of puffs in the world had on the operation of the simulator no matter where

the viewer was looking. In addition, we found that even though the default cloud had almost

no depth to it, the wind vector simulator still was not able to run in real-time most likely

due in part to the movement calculations of both the clouds and the viewer, use of texturing

and lack of multiprocessing.

E. CLOUD SUMMARY

Overall, we found that we are able to model fairly realistic looking clouds; however

as they stand, they cannot be implemented in real-time and especially not when they are

moving. Nonetheless, the Cloud Modeler is a tool that enables us to model what we think

might work in a simulator and then “try it out.” This strategy worked with incorporating the

stratus layer into NPSNET. The wind vector simulator again does not run in real-time with

the Cloud Modeler’s clouds, but provides a testbed for wind vector simulating - not only

for simulating how the clouds react to winds, but for testing how other atmospheric objects

react as well.

48

The winds themselves were chosen to demonstrate definite changes in the clouds’

movement in order to verify that indeed the clouds are moving as they are supposed to. For

example, a cloud that moves from cell 9 (35 m/s and 180ο) to cell 8 (10 m/s and 180ο)

decelerates from 35 to 10 meters per second. In addition, opposing winds were are also

implemented to demonstrate accurate cloud movement. A part of the world where clouds

experience opposing winds is when they move from cell 2 (5 m/s and 20ο) to cell 3 (5 m/s

and 160ο) or vice versa. At this border they are constantly being pushed from the one cell

to the next and thus, end up moving upward until they reach the height boundary of 4000

meters at which point they die and are brought back into the world at one of the two X

boundaries.

Coupling this variety of winds with the multitude of cloud formations causes

performance problems as we found when running a series of performance tests. These tests

involved using the default, a normal distribution, and symmetrical normal distribution

cloud. Using the default cloud meant that there were 1000 puffs in the world at one time.

When viewing no more than three cells at a time of the world filled with these clouds the

frame rate was on average 6.7 frames per second; but when the user’s view was enlarged

the frame rate dropped to 4.0 frames per second. The frame rate for an aerial view of the

entire world was also 4.0 frames per second. The normal distribution cloud used was

composed of 50 puffs with a depth of five which means there were 2500 puffs in the world

at any one time. The frame rate for this type of cloud varied from 1.4 frames per second

when looking at the aerial view to 4.0 frames when there were only four to five clouds in

view. Finally, the cloud composed of puffs arranged in a symmetrical normal distribution

was made of 40 puffs with a depth of three meaning that there were 2000 puffs in the world.

The frame rates were just about as low as the previous cloud type’s - 5.0 frames per second

when six to seven clouds were in view and 1.8 to 1.9 frames per second when viewing the

entire world from the air.

47

at the velocity and in the direction associated with the wind of the cell meaning that every

puff that is part of the same cloud is moved exactly the same amount in the same direction.

This movement is calculated each frame using the following common vector component

equations (delta_time is incorporated to calculate movement in meters per second).

(Eq 4.1)

(Eq 4.2)

(Eq 4.3)

φ = the cloud’s pitch

α = the cloud’s heading

As the clouds move through the world they enter new cells and are thus, made to

respond to the new wind vectors. However, a cloud does not immediately start moving at

the same speed as the wind. It accelerates or decelerates depending on the change that is

experienced. The acceleration and deceleration algorithms are not physically-based, but

rather provide the appearance of a gradual increase or decrease in speed until the cloud

obtains the speed and heading of the wind in its cell. Likewise, when a cloud leaves the

boundaries of the world - 0 to 10,000 meters in X, 0 to 10,000 meters in Y, and greater than

4000 meters in Z - the cloud is “turned off” using the pfSwitch node, but is immediately

turned back on again at one of the two X boundaries (at a randomly chosen Y and Z

position) so that there is always the same number of clouds in the world (either 50 or 200).

Figure 13: Default Cloud

x_position = φ() velocity α() delta_time×cos××cos

y_position = φ() velocity φ() delta_time×sin××cos

z_position = α() velocity delta_time××sin

46

provides a simple method of grouping puffs according to what cloud they belong to and is

useful when the cloud exits the boundaries of the world as is explained below.

The wind vector simulator unlike the Cloud Modeler imposes a 50 puff per cloud

limitation on clouds that may exist in its world. This restriction is enforced by using a

default cloud model puff arrangement anytime the puff amount obtained from the input file

is over 50. The default arrangement consists of five puffs arranged as illustrated in Figure

13. However, this default cloud still incorporates the rest of the file’s parameters in each of

the 200 clouds that are placed in the world. If, on the other hand, the amount of puffs

specified in the modeler output file is less than or equal to 50 then 50 clouds modeled using

the distribution indicated are placed in the wind vector world. Fewer clouds are

incorporated in this situation in an effort to limit the total amount of puffs present in the

world.

Once, placed in the world, the clouds are subjected to the wind vectors of the cells

within which they exist. The program determines which cell the cloud is in by comparing

the position of the middle puff of the cloud with the cells’ boundaries. Each cloud moves

pfScene

pfSwitch pfSwitch pfSwitch
0 1 200

pfDCS pfDCS
0 50

pfDCS pfDCS pfDCS pfDCS
1 150 50

. . .

.

pfGeode
(puff)

Figure 12: The Scene Hierarchy for the Wind Vector Simulator

45

Our wind vector Performer-based testbed is composed of a 10,000 meter by 10,000

meter world divided into ten cells, each containing a different wind velocity and heading

as displayed in Figure 11. The cells are 2000 meters by 5000 meters. A moving eyepoint

via a mouse and a number of key punches allow the user to view the world from a variety

of perspectives.

Clouds are inserted in the world initially by reading a file of parameters produced

by our Cloud Modeler and modeling the clouds specified using basically the same

modeling algorithms incorporated within the modeler. Figure 12 illustrates the scene

hierarchy incorporated in this simulator. Again, one pfGeode node is copied so that the puff

is the child of many pfDCS nodes; however, unlike the Cloud Modeler’s scene graph, a

pfSwitch is included for each cloud and not per puff. This use of the pfSwitch node

Cell 0: Cell 1: Cell 2: Cell 3: Cell 4:

Cell 5: Cell 7: Cell 8: Cell 9:Cell 6:

Vel: 5 m/s

Head: 5ο

Vel: 25 m/s

Head: 5ο

Vel: 5 m/s Vel: 5 m/s Vel: 20 m/s

Vel: 10 m/s Vel: 10 m/s Vel: 10 m/s Vel: 10 m/s Vel: 35 m/s

Head: 20ο Head: 160ο Head: 180ο

Head: 0ο Head: 30ο Head: 170ο Head: 135ο Head: 180ο

Figure 11: Winds Within the Wind Vector Simulator

44

meters (6500 feet) and 500 meters (1600 feet) for the top and bottom of the layer

respectively. In addition, the minimum and maximum thicknesses allowed are 500 meters

and 1000 meters respectively and are incorporated using the same algorithm as the modeler

with one exception - if the algorithm described above for increasing or decreasing the

thickness generates a boundary value that is beyond that boundary’s limit, then this

boundary is placed at its limit and a greater amount is added or subtracted from the other

boundary in order to model the thickness requested. This idea also pertains to increasing

and decreasing the boundaries’ heights in that if an increase or decrease were to cause a

boundary to extend over its limit then it is moved to its limit and the other boundary is

placed the thickness value away from the limited boundary. Finally, both of the transition

zones have constant values, each start 150 meters from the corresponding boundary, and

are automatically adjusted to their proper positions every time the heights of the top and

bottom of the cloud layer are modified.

Overall, the limitations selected correspond to those of typical stratus layers as

described above in the Characteristics section. The pfEarthSky functions along with these

parameters provide realistic modeling of the layer from below the stratus and within it and

do not detract from NPSNET’s real-time performance.

D. CLOUDS AFFECTED BY WINDS

Since clouds are not stationary, but rather are affected by the movement of the air

mass that surrounds them we felt it was necessary to construct a “proof of concept” world

of wind vectors that affect the movement of the clouds. As, Nash states in [FAA65], “As

the transportation agency for water vapor, wind has an important effect on the formation of

fogs and clouds and on the production of precipitation.” A description of this effect on the

formation of clouds is found in the Cloud Characteristics section of this chapter. And thus,

since it is the air currents that cause the clouds to develop in the first place, it is imperative

that winds be considered when modeling clouds.

43

that the thickness of the layer remains constant. In order to increase or decrease the

thickness of the stratus a separate key punch sequence is provided. When this feature is

selected, the thickness algorithm equally distributes the thickness change between the top

and bottom boundary heights meaning if the thickness is increased by 100 meters then the

height of the top boundary is increased by 50 meters and the height of the bottom boundary

is decreased by 50 meters. This feature along with the others described related to the stratus

layer allow the user to fully take advantage of Performer’s cloud layer capabilities and

provide the designer with the capability to model sheet-like clouds for eventual use within

Performer-based simulators like NPSNET as we have done.

3. Stratus Layer in NPSNET

Our implementation of the low level stratus cloud within NPSNET involves

providing the user with the capability for turning on or off the cloud layer, changing the top

and bottom boundaries as described above and adjusting the thickness. There are however,

limitations on all of these features. Cloud parameters are only allowed to be changed if the

clouds are visible. When adjusting the heights of the boundaries the user is limited to 1980

General Visibility

Lower Transition Zone

Clouds

Ground Fog

General Visibility

Upper Transition Zone

Figure 10: Performer’s Layered Atmospheric Model From Ref. [SGIA94]

42

other than the height at which they are found and their difference in denseness (stratus layer

is more dense).

In general, figures that are used to describe stratus layers other than their height as

stated above are their thickness and their horizontal dimension. A stratus layer is typically

0.5 to 1 kilometer thick and its horizontal dimension may range from 10 to 1000 kilometers

(6 to 600 miles). In addition, the total area encompassed by a stratus layer is as large as

1,000,000 square kilometers [SCHA81].

2. Stratus Layer in the Cloud Modeler

Based on these stratus characteristics, we added a stratus layer to the cloud modeler.

The stratus was incorporated by employing a set of Performer’s functions that are used for

creating environmental visual effects (sky, horizon, ground, clouds, and fog), called

pfEarthSky [SGIA94]. Performer incorporates approximations of visibility effects by using

a multiple-layer sky model as illustrated in Figure 10. The fog layer extends from the

ground to the area of general visibility thinning out as its altitude increases. The general

visibility area extends to the bottom of the lower transition zone of the cloud layer if in fact

the programmer has elected to incorporate clouds and the optional transition zones. These

zones provide a smooth transition between the area of general visibility and the opaque

layer of near-zero visibility that represent the clouds. If clouds do not exist then the area of

general visibility extends infinitely from the boundary of the fog layer or ground.

As far as the cloud functions are concerned, Performer allows a designer to specify

the height of the top and bottom of the cloud layer, the colors of both the top and bottom in

RGBA components (different top and bottom colors result in a blending effect, but

currently the alpha component has no effect), and the height of the top and bottom transition

zones. Therefore, our cloud modeler allows the user to interactively modify these

parameters and examine their effect on the stratus layer. In addition, the user is also able to

control the thickness separately. In other words, changing the layer’s top or bottom

boundaries results in the opposite boundary’s height being altered by the same amount so

41

As a result of these tests, we felt it was necessary to provide a way for users to

evaluate the performance of clouds that they designed with the Cloud Modeler in their own

simulators. We added a feature to the modeler that allows a designer to save the parameters

of any cloud modeled to a file to be read by a simulator aware of how the cloud information

is stored. The file contains current values for all of the parameters that the user is allowed

to modify. In addition, we developed a program that reads this file in order to place clouds

in its world of wind vectors. This simulator and its performance is described in Section D

of this chapter.

Another application of this modeler is for modeling a uniform stratus layer. A layer

has been incorporated in the modeler that is separate from the puff and the rest of the scene

hierarchy. The layer’s characteristics of the height of both the top and bottom, thickness,

color, and transition zones between the sky and the start of the top and bottom of the layer

are all adjustable. In addition, this model enabled us to experiment with various stratus

layer appearances and then place one in NPSNET that too can be adjusted. Concepts

regarding the stratus layer and its implementation are discussed in the next major section

of this chapter.

C. MODELING THE STRATUS LAYER

1. Characteristics

As stated in Section A of this chapter, a stratus layer is a sheetlike cloud that

develops as a result of condensation within layered air that is relatively free of vertical

currents. These layers are part of the low-family cloud classification (which includes

stratocumulus and nimbostratus clouds as well) that range in altitude from 1980 meters

(6500 feet) to just above the ground [NAVA79]. Strictly speaking stratus clouds are layers

of fog or clouds that are not far above the ground or sea (500 meters or 1600 feet high) and

they are basically formless. The difference between fog and a stratus layer is that the stratus

layer does not reduce horizontal visibility at the surface below it [FAA65]. However, fog

and stratus many times exist together, but there is really no firm distinction between the two

40

viewpoint where the entire cloud was in the viewport and then drove through the middle of

the cloud. The results of these tests are displayed in Table 5. We concluded that clouds with

over 50 puffs cannot be displayed completely at the minimal real-time frame rate of 10

frames per second even when the user is not moving. Driving through the clouds results in

much worse performance and as illustrated in Table 5 the frame rate decreased to as little

as 2.0 frames per second due to the increased depth that the user had to drive through.

Number
of Puffs

Rows Depth
Still Viewpoint

Frame Rate
(frames per sec.)

Worst Case Frame
Rate - Driving

Through Clouds
1 1 1 20.0 10.0
50 3 3 10.0 4.0
200 5 5 5.0 2.5
200 4 10 6.7 2.0

Table 5: Performance Tests of Clouds Composed of Uniformly Distributed Puffs

Figure 9: Cloud With Symmetrical Normal Distribution of 100 Puffs and Depth of 10

39

This option still provides for fading along the right and left edges of the cloud, but also

distributes the puffs lower along the vertical axis for a more uniform distribution as

illustrated in Figure 8. The algorithm for this arrangement of puffs is exactly the same as

the regular normal distribution except that it alternately builds rows above and below the

imaginary X-axis starting with above the axis. In other words, the program builds one row

(with one puff or multiple puffs if a depth has been selected) and then if there are enough

puffs for this column, the next row is built on the opposite side of the X-axis and this

alternating of sides continues throughout the building process of each of the columns.

Figure 9 illustrates a cloud composed of a symmetrical normal distribution of 100 puffs

with a depth of ten.

7. Performance of and Applications for the Cloud Modeler

In order to determine the effect that clouds modeled with this program might have

on the frame rate of a real-time simulator we ran a series of tests within the modeler on a

Silicon Graphics Reality Engine. Initially we found that the distribution used did not affect

our results; however, the depth did. Therefore, we modeled four different clouds each

composed of a uniform distribution of puffs with varying depths and evaluated the frame

rate (against a requested frame rate of 20 frames per second) of all four from a still

-3 -2 -1 0 1 2 3
.0215 .1359 .3413 .3413 .1359.0215

Total area is still= .9974 = 99.74%

Figure 8: The Symmetrical Normal Distribution

38

c. Symmetrical Normal Distribution

Since the standard normal distribution often results in very high middle

areas of puffs, we decided to also incorporate the symmetrical normal distribution option.

-3 -2 -1 0 1 2 3
.0215 .1359 .3413 .3413 .1359.0215

Total area = .9974 = 99.74%

Figure 6: A Standard Normal Distribution Curve

Figure 7: Cloud With Normal Distribution of 100 Puffs and Depth of 10

37

way that it is in the uniform distribution. The cloud is initially constructed from the bottom

left and built up until 0.0215 of the total puffs have been placed in the leftmost column.

During this build up, depth is incorporated at each level of the column (row) before the

algorithm places a puff(s) in the next row. For example if the column is to have six puffs in

it and the depth selected is one then there will be six rows of one puff in that region; whereas

if a depth of three is requested then there will only be two rows with three puffs in each

(extending back). The algorithm continues to the next column on the right and builds in the

same manner as with the previous column. This overall routine continues until a normal

distribution is represented by six columns of puffs. Figure 7 contains a cloud composed of

100 normally distributed puffs with a depth of ten.

Figure 5: Uniformly Distributed Cloud - 100 puffs, 4 Rows, and Depth of 3

36

display of a cloud composed of 100 uniformly distributed puffs in four rows with a depth

of three as it appears on the computer screen.

b. Normal Distribution

The normal distribution used in the Cloud Modeler is a mathematically

correct approximation of a standard normal distribution. The approximation method is

based on the fact thatmost of the area under a standard normal curve (a curve symmetric

about the vertical axis through the origin of a plane) lies between -3 and 3 of the horizontal

axis [WEIS91] as illustrated in Figure 6. The numbers labeled inside the curve indicate the

fraction of the area of the normal curve that exists between two consecutive whole number

boundaries. When all of the fractional numbers are added together they account for 99.74%

of the area of the normal curve. Therefore, when a normal distribution is selected by the

user, the Cloud Modeler models this distribution by distributing the total number of puffs

in the scene among six areas (or columns) just as Figure 6 illustrates. Distributing the puffs

in this way requires that the algorithm multiply the total number of puffs in the scene

individually by each of the fractional numbers in Figure 6 and use the results to fill each of

the cloud’s six single-puff wide columns. Additionally, depth is incorporated in the same

2 4

3 5

.

Each represents 3 puffs deep

Figure 4: Uniform Distribution Drawing Order

1

Example: Uniform Distribution with 30 puffs, depth of 3, and 4 rows.
Numbered arrows indicate the order in which the cloud was drawn.

35

6. Cloud Puff Distributions

The following distributions are provided by the modeler: uniform, normal, and

symmetrical normal - an arrangement that is the same as a regular normal distribution

except that another inverted normal distribution is present which is symmetrical to the first

about the X-axis. All three distributions also accept a user specified depth and the uniform

distribution allows the user to select how many rows of puffs are to be displayed. An

increase in depth increases the opacity of the cloud. There are however, limitations on depth

requests - there must be at least 20 puffs to apply a depth of three, 50 puffs to apply a depth

of five, and 100 puffs to apply a depth of ten. Normal and symmetrical normal distributions

are used to provide a “fading” affect on the outer edges of the cloud. In addition, all of these

commonly known “organized” distributions are incorporated so that a designer may take a

look at a cloud and relatively easily (due to familiarity with the distribution at hand)

determine adjustments that will produce cloud formations needed for modeling

atmospheric effects desired.

a. Uniform Distribution

The uniform distribution employs the simplest algorithm of the puff

arrangements available. Once a user specifies a depth and the amount of rows that the cloud

is to have, the uniform distribution algorithm builds a cloud from the left and up meaning

that it starts at the left most position, applies the required depth, then moves up to the next

row and applies the same depth and continues in this manner until the required number of

rows are present at the leftmost X position. At this point, the algorithm moves right and

down to the first row and continues with the same algorithm until the cloud is built. All

puffs are equally spaced by using their bounding volumes. After a puff is positioned, the

next one is placed at the proper row, depth, and column but relative to the previous puff’s

bounding volume so that they are partially overlapped which avoids displaying unrealistic

holes. This method of construction is illustrated in Figure 4. In addition, Figure 5 is a

34

• Increase or decrease the transparency by 0.1.
• Scale the puff size by factors of 10, 20, 30, 40, 50, 60, 75, 100, 125, & 150.
• Input the desired number of puffs to make up the cloud (1, 2, 3, 30, 40, 50, 75,

100, 150, & 200).
• Change the scene’s light’s ambient components (RGB) in increments or

decrements of 0.1.
• Change the scene’s light’s color components (RGB) in increments or

decrements of 0.1.
• Change the direction from where the light is coming - northwest, southwest,

northeast, or southeast.
• Change the scene’s light model’s ambient components (RGB) in increments or

decrements of 0.1.
• Examine the texture applied to the polygon by itself without material

properties contributing to its appearance.
• Choose a desired distribution and depth of puffs - uniform, normal, or a

symmetrically normal distribution about the X-axis.

The above options are manipulated by the designer interactively by pushing a set of

keys as described in Appendix A, the Cloud Modeler User’s Guide, and the program

responds to these key punches by calling the appropriate callback function which adjusts

the selected attribute within the puff’s pfGeoState. In addition, these parameters’ values are

displayed on the screen at all times. Furthermore, the program provides a moving eyepoint

by way of the mouse which allows the user to thoroughly examine the cloud (cloud is

stationary) from its exterior and interior and from all angles.

The capability to have many puffs arranged in designated distributions requires

further explanation. When a user requests that more than one puff be displayed in the world,

the program responds by placing the amount designated on the screen in a horizontal row.

More or less puffs, depending on the user’s request, are displayed in the scene by turning

on or off the pfSwitch nodes and each pfDCS node is used to translate each copy of the puff

to make this row. Once the designer selects the amount of puffs to make up the cloud, a

distribution of these puffs may also be selected.

33

node is needed in this case, because Performer provides a memory saving capability called

shared instancing [SGIA94]. Shared instancing involves adding a node to two or more

parents thereby giving each parent its own copy of that node. However, changes (attribute

changes) made to the node itself, not a copy, are reflected in all copies. On the other hand,

when instancing is incorporated, changes made to a parent node are propagated down to its

children, and if any of its children is a copy of an instanced node then only that parent’s

copy is affected. The cloud modeler’s scene graph in Figure 3 incorporates both of these

inheritance properties. For example, all of the pfDCS nodes share the one pfGeode puff and

when a change is made to the puff’s alpha value via the puff’s pfGeoState, all of the pfDCS

nodes’ local copies reflect this modification. However, if pfDCS node 0 is translated 30

meters in the positive X direction then its child is also translated the same amount. This

movement does not affect any of the other copies of the puff. In addition, each pfDCS node

has a pfSwitch node as its parent so changes made to the pfSwitch node’s child and/or made

to the child of this child are experienced by the pfSwitch node. Furthermore, if a pfSwitch

is “turned off” then so are its children - specifically the copy of the puff extending from this

pfSwitch via the pfDCS is not rendered. These examples and the overall concepts of

inheritance are vital to the functionality of the cloud modeler as is better explained in the

next section.

5. Cloud Modeler’s Capabilities

As previously stated, once the initial puff is created and added to the scene graph,

the user is free to change any of the many parameters defining the puff or puffs. The

modeler displays one puff initially, but as mentioned the user may add more puffs to the

scene. This feature and the many additional options available to a designer are listed below

with further explanation following the list.

• Change the diffuse RGB material properties of the puff(s) in increments or
decrements of 0.1.

• Change the ambient RGB material properties of the puff(s) in increments or
decrements of 0.1.

32

In order to incorporate the puff into the scene hierarchy, the puff’s pfGeoSet is first

added to a pfGeode node. The graph is then built by starting with the pfScene node as the

root, adding pfSwitch nodes as branches (children) to the pfScene, extending a pfDCS node

from each of the pfSwitches and finally connecting the pfDCS nodes to the one pfGeode

containing the puff. The purpose of the switches is to add further functionality to the

modeler. They allow a user to model a cloud with more than one puff by “turning on and

off” children extending from these nodes. Using a pfSwitch node to turn off a child tells the

cull process not to include that node in the display list to be rendered for that frame. The

pfDCS nodes provide the capability to scale the puff and provide support for user selected

distributions of multiple puffs in that they are used to translate the puffs to their proper

position within the chosen distribution. Distribution options are described in Section 6. The

cloud modeler’s scene graph is displayed in Figure 3.

An interesting feature of this graph is that there is only one puff node (pfGeode)

even though the cloud modeler has the ability to display many puffs at one time. Only one

pfScene

pfSwitch
0

pfSwitch
1

pfSwitch
200

. . .

pfDCS
0

pfDCS
1

pfDCS
200

. . .

pfGeode
(the puff)

Figure 3: Cloud Modeler Scene Hierarchy

31

Node Type Node Class Description
pfScene Root Parent of visual database
pfSwitch Branch Selects among multiple children for

displaying
pfDCS Branch Dynamic Coordinate System - used to

move scene objects
pfGeode Leaf Contains geometric specifications

(pfGeoSets)

Table 4: Applicable Iris Performer Node Types After Ref. [SGIA94]

gst = pfNewGState(arena);
pfGStateMode(gst, PFSTATE_ENTEXTURE, 1);
pfGStateMode(gst, PFSTATE_TRANSPARENCY, 1);
pfGStateMode(gst, PFSTATE_ENLIGHTING, 1);
//*****Set up initial materials for puff and assign to pfGeoState, gst.
mt1 = pfNewMtl(arena);
pfMtlColorMode (mt1, PFMTL_BOTH, PFMTL_CMODE_COLOR);
pfMtlColor(mt1, PFMTL_AMBIENT, rm_amb, gm_amb, bm_amb);
pfMtlColor(mt1, PFMTL_DIFFUSE, rm_diff, gm_diff, bm_diff);
pfMtlAlpha(mt1, transp);
pfGStateAttr(gst, PFSTATE_FRONTMTL, mt1);
pfGStateAttr(gst, PFSTATE_BACKMTL, mt1);
//*****Set up texture (and environment) and assign to gst.
tex = pfNewTex(arena);
pfLoadTexFile(tex,"puff.rgba");
pfTexRepeat(tex, PFTEX_WRAP, PFTEX_CLAMP);
tenv = pfNewTEnv(arena);
pfTEnvMode(tenv, PFTE_BLEND);
pfGStateAttr(gst, PFSTATE_TEXTURE, tex);
pfGStateAttr(gst, PFSTATE_TEXENV, tenv);
//*****Create a light source coming from the "south-west" and a lighting
//*****model and assign both to gst.
SunArray[0] = pfNewLight(arena);
pfLightColor(SunArray[0], rl_col, gl_col, bl_col);
pfLightAmbient(SunArray[0], rl_amb, gl_amb, bl_amb);
pfLightPos(SunArray[0], x_pos, y_pos, z_pos, 0.0f);
lm = pfNewLModel(arena);
pfLModelAmbient(lm, rlm_amb, glm_amb, blm_amb);
pfLModelTwoSide(lm, TRUE);
pfGStateAttr (gst, PFSTATE_LIGHTS, SunArray);
pfGStateAttr (gst, PFSTATE_LIGHTMODEL, lm);
//*****Attach pfGeoState, gst, to the puff pfGeoSet, gset1.
pfGSetGState(gset1, gst);

Figure 2: Creating a pfGeoState to Attach to pfGeoSet

//*****Create a new pfGeoState from shared memory and enable
//*****texturing, transparency, and lighting.

30

user and it emits light whose color is also specified using RGB components. The puff’s

ambient reflectance and diffuse reflectance are dependent on the amount and color of

ambient and diffuse light provided by the sun model respectively. Although the light is

infinite, the direction from which the light comes from is provided and may be manipulated.

The light model on the other hand, must be specified so that the lighting just

described may take effect. The light model is used to specify the amount of total ambient

light present in the entire scene (not just from the sun) and to enable two-sided lighting.

This model also provides the capability to select attenuation calculations desired, but since

the modeler only has an infinite light, attenuation does not play a role in this simulation.

3. Resulting pfGeoState Associated With the Cloud Puff

After all of the above attributes and lighting are assigned to a pfGeoState this

pfGeoState is assigned to the puff pfGeoSet and the initial puff is ready to be drawn. As a

result of this assignment, every time the puff is drawn by Performer the associated

pfGeoState is applied to the geometry pipeline so that the attributes set in the pfGeoState

are applied to the pfGeoSet’s appearance. Example Performer code used to define and

assign rendering modes and attributes to a pfGeoState and subsequently attach it to the puff

pfGeoSet is illustrated in Figure 2.

4. Adding the Puff to the Scene Graph Hierarchy

After the construction of the initial puff, the Cloud Modeler places the pfGeoSet

into a run-time scene graph hierarchy. The scene hierarchy maintains state information and

geometry, and defines how items in the database relate to one another [SGIA94]. Various

connected node types each with a specific function compose this directed acyclic graph.

Connection among nodes allows for inheritance and thus sharing of database units. The

graph is usually constructed by the application at load time and during execution it is

continually culled (by traversing the graph using a depth-first search) resulting in all visible

geometry being added to the display list which is then rendered by the draw process. Table

4 below displays the nodes used by the Cloud Modeler.

29

and lighting modes are all enabled so that these attributes may be used to characterize the

puff. Material properties which define reflectance characteristics of surfaces including

alpha (transparency), ambient, and diffuse color values are specified. Ambient reflectance

is the appearance of the surface due to the scattering of lighting in the scene where as the

diffuse property is the reflectance of a surface due to a directed light in the scene

[ZYDA90]. Both reflectances occur uniformly in all directions and their values are

assigned using values between 0.0 and 1.0 for the red, green, and blue (RGB) components.

Finally, the alpha material property allows transparency to be specified and the amount is

defined using numbers between 0.0 and 1.0 where 0.0 is totally transparent and 1.0 is

completely opaque. The texture of the puff is applied by loading an RGBA file and

clamping (only one image of the texture is applied to each polygon using the provided

texture coordinates described above) it to each polygon. In addition, a texture environment

is created to specify how the texture is to blend with the underlying colors of the polygons.

Performer’s PFTE_BLEND which is the same as GL’s TV_BLEND token value is

employed so that total blending occurs between the puff’s polygons’ materials including

the alpha value and the texture’s properties.

2. Lighting

The pfGeoState associated with the puff pfGeoSet is also assigned lighting

characteristics so that the cloud’s reflectance characteristics can vary as the light in the

scene varies. This capability of the modeler is extremely important, because lighting

significantly affects the obscuration of a cloud. A cloud can appear to an observer totally

translucent when no light is shining on it, but opaque if a light is shining on it at just the

right angle [BOEH94].

The lighting created for this model consists of a light along with a light model. The

light is designated as an infinite light (as opposed to a local one) since this is how the sun,

the main light that affects clouds, is categorized. In addition, the light provides ambient

lighting based on the RGB color values that this component of the light is assigned by the

28

is needed for each connected triangle following the first because the last two drawn vertices

of the previously drawn triangle are shared with the next one to be constructed (triangle

1,2,3 shares vertices 2 and 3 with triangle 2,3,4 which shares vertices 3 and 4 with triangle

3,4,5, and so on). Sharing of vertices also allows for substantial savings of memory space.

In addition, normals are assigned per polygon of the puff as are texture mapping

coordinates so as to completely cover each of the three polygons. However, further

properties of the puff are assigned by associating a pfGeoState with the pfGeoSet.

“A pfGeoState is a structure that encapsulates all the graphics modes and attributes

that libpr manages.” [SGIA94] By setting various elements of a pfGeoState a graphics

context is defined that may be applied to a pfGeoSet thereby completely defining both the

geometry and graphics state. Any rendering attributes (such as material and light

definitions) or modes (such as enabling texturing and lighting) not specifically assigned to

the pfGeoState are inherited from the current global state by the pfGeoState.

In the case of the cloud puff, a variety of modes and attributes are defined and

assigned to the pfGeoState which is assigned to the puff pfGeoSet. Texturing, transparency,

2

1

3

5

4

6

8

7

Figure 1: 8-sided Polygon Built Using Tristrips

27

In addition, each cloud type does not develop due to only one set of conditions. For

example a stratus layer may form when moist air is lifted by turbulence resulting in a nearly

homogeneous, structureless layer. Stratus also forms due to a warm air mass flowing in

over an elevated coast or when air is lifted up the slopes of a mountain. Due to the many

variations of clouds brought about by so many environmental factors we felt it was

necessary to design an interactive cloud modeler as a starting point for eventually modeling

these variations within a real-time simulator like NPSNET.

B. CLOUD MODELER

The Cloud Modeler is a tool that enables a user to interactively create a cloud by

using a previously constructed puff who’s material attributes may be changed. The user

may also designate how many of these puffs are to compose the cloud. The modeler uses

both C++ and Silicon Graphics’ Performer so that clouds designed using this tool may be

easily ported into NPSNET since it was also written using this programming language and

tool. Performer’s low-level library libpr is used to build the puff since it handles Silicon

Graphics architecture-specific tuning issues to “provide optimized rendering functions,

state control, and other functions that are fundamental to real-time graphics” and also

interfaces with the IRIS Graphics Library [SGIA94]. Additionally, this library provides

optimized mathematical functions that are employed in this program as well.

1. Puff Characteristics and Construction

libpr provides geometry primitives called pfGeoSets that are a collection of like

geometry (lines, points, triangles, quads). Every pfGeoSet is made of only one type of

primitive and all primitives part of that pfGeoSet share the same attribute bindings (texture,

color, and normal bindings). The puff is made of one pfGeoSet containing three

perpendicularly aligned 8-sided polygons. Each polygon is built using tristrips (each tristrip

is considered to be a primitive) as illustrated in Figure 1 where the vertices’ numbers

represent the order in which the polygon is drawn. Tristrips is a very fast method of drawing

objects since after the first three vertices are drawn to form the first triangle, only one line

26

Generally speaking, clouds are classified by their height and how they are formed.

This height characterization and the general categories of clouds are listed in Table 3

below.

All clouds form as a result of air cooling below its dew point, the point at which the

air’s relative humidity is 100%. This decrease in temperature is usually due to adiabatic

expansion. Adiabatic expansion occurs when an air parcel ascends and consequently

expands due to air moving over terrain of increasing height or over air of greater density.

Lifting of air due to mechanical turbulence or thermal instability also causes adiabatic

expansion. In general, there are two classifications of air ascension that account for the two

basic ways a cloud forms - condensation within rising air currents - cumulus formations -

or condensation within layered air that is relatively free of vertical currents - stratus

formation. However, it is the variations in these two processes that account for the variety

of cloud forms that exist such as those listed in Table 3.

Altitude over
Middle Latitude

(In Feet) Name Description Composition
High Clouds
18,000 to 45,000

Cirrus

Cirrostratus
Cirrocumulus

Maretails
Wispy & Feathery
High Veil, halo Cloud
Mackerel Sky

Ice Crystals

Ice Crystals
Ice Crystals

Middle Clouds
6500 to 18,00

Altocumulus
Altostratus

Widespread, cotton ball
Thick to thin, overcast;
high, no halos

Ice and Water
Water and Ice

Low-Family
Clouds
Sea Level to 6500

Stratocumulus

Stratus

Nimbostratus

Heavy rolls, low,
widespread. Wavy base of
even height
Hazy cloud layer, like
high fog. Somewhat
uniform base
Low, dark gray

Water

Water

Water/ice crystals
Vertical Clouds
Few hundred to
65,000

Cumulus

Cumulonimbus

Fluffy, billowy clouds.
Flat base, cotton ball top
Thunderhead, Flat
bottom and lofty top
Anvil at top

Water

Ice (upper levels)
Water (lower levels)

Table 3: Cloud Types and Associated Conditions After Ref. [NAVA79]

25

IV. CLOUDS

Atmospheric obscurants such as clouds greatly enhance the realism of a synthetic

environment and thus aid in further immersing a user into the world. Clouds are vital to the

effectiveness of the virtual battlefield as a training aid since they can affect the battlefield

in several ways. These ways include obscuring visibility and impacting target detection and

the operation of infrared sensors [LADS94]. It is therefore, imperative that such training

systems accurately model clouds so that military units are receiving comprehensive

training. As previously discussed, using the virtual battlefield for conducting military

exercises saves a great deal of time (especially in terms of planning complex joint

exercises) and money and significantly improves the serviceman’s decision making skills.

Simulating weather effects further adds to these advantages, by allowing training

commanders to create weather conditions of their choosing. Such “what if” scenarios can

constantly be incorporated and adjusted so that servicemen are well prepared to capably

handle any meteorological occurrence during times of real crises. It is impossible to receive

this kind of exposure to the multitude of weather occurrences in field training exercises.

However, in order for exercise commanders to have the ability to create such environmental

effects in the virtual battlefield, the simulation designer must accurately model the nearly

infinite amount of atmospheric happenings including the wide variety of cloud

characteristics.

A. CLOUD CHARACTERISTICS

A cloud’s appearance is a reflection of the temperature and moisture content of its

surrounding atmosphere [NAVA79]. Clouds are made of condensed liquid or frozen water

particles that vary in size from about 2 to 30 micrometers. There exist as many as 300 or as

little as ten such particles in a milliliter of air. Additionally, the total amount of water

contained within a cloud varies greatly too - a single cloud might hold as little as 0.1 gram

or as much as five or more grams of water per cubic meter. Due to such vast ranges of these

attributes, clouds are found in an infinite variety of forms.

24

time dynamic terrain models already incorporated. And finally, as stated previously, since

NPSNET was redesigned to use Performer, explosive effects previously modeled are no

longer compatible with this simulator. Therefore, we deemed it necessary to design

explosive effects that a Performer-based distributed synthetic environment such as

NPSNET could simulate.

23

no less than 8 frames per second and as high as 20 frames per second. It is especially

important to note that when an object (of varying amounts of polygons) was affected by a

small set of deforming forces (explosions), the frame rate ranged from 16 to 10 frames per

second.

3. Explosions Summary

Although a variety of explosive effects have been created for NPSNET in the past,

NPSNET has since incorporated Performer and other modeling tools (e.g., Multigen).

Performer converts the models into a format that it is capable of displaying and therefore,

an algorithm for creating explosive effects based on this format needed to be developed. In

addition, previously simulated explosions were not networked. Thus, our aim was to

provide networked explosions in the improved version of NPSNET.

D. SUMMARY OF EFFECTS RESEARCH

The effects research presented in this chapter all have added to the realism of

training simulators; however as discussed there are many areas in which they can be

improved or enhanced. We have therefore chosen to address several of these issues. The

first of these issues deals with cloud modeling. Clouds have been modeled within real-time

simulators; however, gridded wind vector data has not been included in these simulations.

In addition, when flying through these clouds, the performance in frame rate dropped

significantly enough to fall out of real-time limits. On the other hand, Corbin was able to

model obscurants (smoke plumes) that could be flown through in real-time. Thus, it was

our intent to incorporate real-time “fly throughs” and clouds affected by multiple wind

vectors using Corbin’s puff model. As far as dynamic terrain simulation is concerned, we

felt that since fully recognizable real-time models of dynamic terrain existed in NPSNET

(and IST’s high fidelity earthworks were incapable of meeting the performance standards

necessary of a distributed real-time simulator), that the networking of dynamic terrain in

real-time was the next logical step. Thus, it was our goal to implement the Destructible

Entity PDUs and then evaluate their impact on the performance of NPSNET using the real-

22

Deforming forces on the other hand, exist only if such forces when applied are

intense enough to break or bend a polygon of an object. A force that is strong enough to

break a polygon is simulated by removing that polygon from the object list and replacing it

with a list of smaller shards which are computed by cutting the polygon into triangles in a

spiral like inward motion. On the other hand, if the force only causes the polygon to bend

then again the polygon token is removed from the list and is replaced with a bendable

polygon whose bending force is modeled using Hookes’ law along with a spherical spring

simulation.

In addition, Monahan incorporated further primitives and a layered set of object

behavior control OFF extensions. The first layer allows for specifying the units of measure

to be used and provides routines needed to make conversions so that OFF objects may be

made compatible with any platform/simulator. The next layer provides the user with the

ability to specify the object and force characteristics and constraints. And finally, layer

three’s purpose is to provide a mapping from an object’s movement changes (via hardware

input sources) to its afflicting forces’ descriptions (thus altering their affect based on user

input changes).

Monahan’s OFF Mover Tool allows a user to test these features before

incorporating them into a simulation. A designer can make a variety of object and force

characteristics modifications and view the effect of these changes on the OFF object from

all perspectives. When the user is satisfied with the object’s behavior, the user has the

option of saving the modified object so that it may be implemented in any simulation that

employs the OFF library of object and force functions.

In addition to the OFF library enhancements, Monahan measured the cost of

employing OFF physically-based modeling techniques in terms of frames per second based

on objects affected by both deforming and non-deforming forces. Tests involved small,

average, and large numbers of objects or polygons per object that are affected by small,

medium, and large sets of forces run on a single processor Silicon Graphics 4D/240 VGX

workstation. With just this single processor the simulations were able to maintain a rate of

21

attributes and graphically view the results of the changes. These attributes are then saved

to a file for use in an animation sequence. However, the animations are only of the

explosions of the munitions (specifically chemical energy and shrapnel producing

weapons), and not of the objects impacted by the weapons.

2. Monahan

James Monahan also provided a way to incorporate such physically-based

modeling in three-dimensional simulations by enhancing the Naval Postgraduate School’s

Object File Format (OFF) [MONA91]. OFF is a standard set of files that contain object

characteristics (such as material and light specifications) and routines that read in these

attributes and allow for manipulation of the objects. The main purpose of OFF files is to

provide a simple way to modify and/or port commonly used objects, attributes, and routines

between various platforms without having to “reinvent the wheel every time.” Monahan

added the capability to create objects with various physical characteristics and constraints

which are used to control the objects’ motion due to internal and external forces acting on

them. Forces are associated with each object in that a linked list of such forces are part of

the overall programmed structure of the object (these objects are also maintained in a linked

list of objects).

Forces modeled are both deforming (breaking or bending of the object) and non-

deforming. Newton’s laws are applied to calculate non-deforming force vectors which are

then converted into two collision coordinate system vectors that affect torque and

translation respectively. These vectors are then used to compute object frame movement

values (acceleration and velocity) which are then mapped to corresponding world frame

vectors and are ultimately used in modified Euler equations to determine the object’s final

position. Euler equations are used due to their simplicity and iterative speed especially

since force updates are calculated one at a time rather than in parallel. Global forces are also

applied but at each object’s center of mass causing only linear acceleration.

20

distributed training systems. However, it is useful as a testbed for simulating vehicle/

environment interaction.

4. Dynamic Terrain Summary

IST has definitely created a high-fidelity dynamic terrain simulator. Walters’ on the

other hand, employed simple computationally inexpensive objects that are recognized by

the viewer as the items they are meant to represent - Thorp’s “70% solution”[THOR87] -

but, they do not exhibit the kind of realism that IST has been able to model. However, it is

the use of these icons that allow Walter’s earthworks to be implemented in a 3D real-time

simulator like NPSNET (without detracting from the simulator’s performance); whereas

IST’s models are not capable of achieving this type of performance. Still another difference

between the two similar features is that Walter’s terrain models are not networked, but

IST’s earthworks are. Thus, after comparing the advantages and disadvantages of both

dynamic terrain implementations, we made it our goal to network dynamic terrain effects

in NPSNET as realistically as possible while still maintaining real-time performance.

C. EXPLOSIONS

1. Nash

David Nash implemented ballistic trajectories within NPSNET [NASH92]. Nash’s

work simulates the motion of the projectile from the moment it leaves the weapon

(including the processes that occur inside the bore of the weapon which place the round in

a spin as well as a forward motion and are largely responsible for determining its behavior

in flight) until the time it explodes in air or collides with another object or the ground. The

path of the projectile is realistically simulated due to the use of an object-oriented modified

point-mass model developed by Lieske and Reiter [LIES66] in which forces including

gravity, air drag, lift, equilibrium yaw, and Coriolis effect act on spin-stabilized projectiles.

The terminal characteristics (events taking place at the end of the trajectory) of the

munitions are also modeled by using the Naval Postgraduate School Explosions Editor

(NPSEE). This editor enables a user to adjust various weapons and explosion environment

19

of utility processes running in the background of all host computers in a DIS exercise and

it is these processes called services that implement the shared environment.

The services and simulation application programs interact in a Client/Server

manner in which the services are the servers and the applications are the clients. This design

means that the vehicle simulators have the same ability to communicate with the shared

environment as the physical modeling programs have. The services consist of the Entity

Service and the Terrain Service.

The Entity Service is a single application that performs DIS networking, executes

dead reckoning for remote sites, and supports multiple simultaneous client applications’

requests for entity information. In addition, the Entity Service handles entity state, fire, and

detonation PDUs. One copy of the Entity Service exists on each machine and thus, it acts

as an intermediary between client applications (which each have their own channel to the

service) and the DIS network. In addition, having this encapsulated service means that

more than one application may be run on a machine.

The Terrain Service is a separate process that handles the state of the terrain. It

contains an instance of the Dynamic Terrain Database and allows client applications to

query and update this database. In addition, it handles the transmission and reception of the

architecture specific dynamic terrain PDUs. One experimental PDU is used by the Terrain

Service to notify a client of terrain changes for which the application must determine

whether or not it has been affected by that change and if this is the case then it must

resample. Although not yet implemented the designers feel that the Terrain Service is the

place to conduct dead reckoning algorithms.

Overall, this architecture’s noted features include the ability to make changes to the

configuration of the Terrain Manager without having to be concerned with their effect on

the client applications and the encapsulation of the shared environment which provides for

easier development of physical modeling algorithms. The architecture runs on Silicon

Graphics workstations, but is not capable of meeting the performance standards of the

18

components), and sends new dynamic terrain messages to simulators. The second

component encompasses the Dynamic Terrain Resources (DTRs). The DTRs each contain

a specific physics-based algorithm for simulating the terrain features (such as soil slippage)

and as new algorithms are developed they may be added to the overall architecture as

DTRs. Finally, the last important part of the architecture is the database itself which has

already been discussed above.

Overall, this initial architectural design provided important feedback. The DTP

quickly became a bottleneck since it was the only interface between DIS and the dynamic

terrain models. It was determined that the DTP, DTRs, and database all need to be run on

the same CPU or on a shared memory multiprocessor due to the large amounts of data

transfer between these three components. Furthermore, the developers realized the

importance of the design of the database in terms of system performance especially as it

relates to access conflicts to the single shared database.

The next architectural design is based on the previous one, but it also focuses more

on the implementation of the terrain manager and making improvements in the areas of

eliminating the bottleneck described above, incorporating more parallelism, and isolating

jobs related to the modeling of a specific geographic area to a single processing unit in an

effort to support load balancing. In this architecture a separate connection to the DIS

network is provided for entity state PDU traffic and dead reckoning so that the portal’s

main function is to process jobs within the terrain manager. However, network

communications is still a problem. In fact, this consistent bottleneck hinders the

architecture’s attempt to migrate jobs related to a specific geographic area to the unit

handling that area. The single shared database problem described above also still exists and

to a greater extent than in the previous architecture. Nevertheless, this architecture proved

to be more scalable than the first and is better able to recover from system failures.

Finally, the developers sought to provide more flexibility in terms of

implementation with their last architecture design. This design centers around the concept

17

contours; rather slope changes are drastic at polygonal boundaries. These sudden changes

cause vehicles driving over the terrain to react in a way contrary to what the viewer expects.

Therefore, mathematical surfaces (B-splines) were employed as a viable alternative since

they are capable of being sampled anywhere not just at data points, and are still compatible

with polygonal systems.

The Dynamic Terrain Database (DTDB) was designed next in an effort to support

a multitude of soil attributes (such as elevation, soil strength, temperature, and water depth)

conceptually using multiple planes or layers for a particular area in the terrain database.

These “multi-planes” are represented by a linked list (0..n attributes) of information. A

client of the database does not know how the data is stored, but may query the database for

information or change the value of one of the attributes at any point. In addition, queries of

extensive areas may also be made which involve performing interpolations between the

data points. Having the ability to make such queries is definitely a significant advantage of

this database especially since such vast areas often times encompass a variety of different

underlying representations. Another advantage of this database is that it serves as a local

active database for each simulation node on a DIS network meaning that each node has the

ability to maintain its own terrain database in a similar way that it keeps track of various

active entities on the network (employing dead reckoning and occasional broadcasts of

terrain state).

IST’s design of system-level architectures began with one that was designed to

obtain as much information related to the problems with incorporating dynamic terrain

within DIS networked simulators. The designers were especially concerned with the areas

of network bandwidth, CPU performance, and the possibility of maintaining different

geographic areas on distinct CPUs. There are three important components within this

architecture. The first component is the Dynamic Terrain Portal (DTP) which serves as the

only connection to the DIS network and the internal dynamic terrain architecture. The DTP

has three important responsibilities - it examines DIS traffic for dynamic terrain events,

handles overall dynamic terrain simulation details (interaction between the other two

16

intensive models at best barely run in real-time on their own. Furthermore, if they were

implemented in conjunction with a 3D simulator like NPSNET, the simulator would in no

way achieve real-time performance. The reason for this decline in performance is that these

simulators already struggle to handle vast amounts of computations and network

communications such that if coupled with these models would just make the system’s load

overwhelming.

3. Dynamic Terrain Architectures

IST has taken a look at what factors are crucial in being able to simulate dynamic

terrain in real-time. They feel that a great deal of the limitations are due to the current data

representation methods that require entirely too much storage and therefore, results in the

transmission of a vast amount of data over a networked system like DIS just to describe

terrain changes [IST94]. Additionally, IST feels that there needs to be a software

architecture that supports the many mathematical models with varying data representations

that have been developed to represent dynamic terrain.

As a result, IST launched an effort to determine what issues must be considered

when designing such a flexible architecture and in doing so they progressively designed

and evaluated their own architectures, each one an improvement over the previous one

[LISL94]. Their first consideration involved the need for a central terrain or environmental

manager versus a fully-distributed system. Although the DIS protocol insists that there be

no central server, IST came to the conclusion that perhaps it is better to consider the

applications on a case by case basis and let the applications’ needs determine which method

of terrain management must be employed.

Data structures was the next issue to be evaluated. Although most simulation and

image generation systems use a polygonal representation for their terrain, it is felt that this

modeling method is fine for rendering (viewing) in high-performance graphics systems,

but, is an inadequate method for terrain following algorithms. The inadequacy lies in the

fact that polygonal representations do not provide smoothly changing terrain slope

15

2. Virtual Bulldozer

Xin Li and Michael Moshell from The Institute for Simulation and Training (IST)

focused their attention on excavating activities - digging, cutting, piling, carrying, and

dumping soil [LI93]. Initially, they developed a virtual bulldozer for moving terrain in front

of a blade thereby creating a berm. The berm appears physically realistic since it is

smoothed by a bidirectional Cardinal spline algorithm; however, it is strictly a kinematic

model with no volume conservation implemented. Also, there are no forces computed and

the soil does not slump when the bulldozer leaves. Therefore, an effort was launched by

Jennifer Burg and Moshell [BURG91] to simulate soil piling up and consequently spilling

down. This model is still kinematic, but is volume conserving during certain conditions. In

addition, it does not consider the physical properties of the different types of soils.

Li and Moshell next focused their efforts on producing dynamic models of soil

slippage and soil manipulations. After researching soil properties, it was determined that it

would be too computationally expensive to model dynamics of various soil types due to the

many environmental conditions that significantly influence them - moisture content, pore

pressures, structural disturbances, fluctuation in the ground water table, underground water

movements, stress history, time, and chemical action. They felt speed and realistic

appearance were more important than simulating constantly changing internal soil stresses

and therefore, the soil used in this research is considered to be homogeneous and isotropic.

Their efforts resulted in the simulation of two excavating machines, a bulldozer and

scooploader. The interaction between the soil and this equipment (not only pushing, but

also scooping soil) is physically modeled by determining if the soil configuration is in static

equilibrium, calculating the forces which drive a portion of the soil to slide if the

configuration is not stable, and at the same time preserving the volume conservation. These

simulations do indeed run in real-time. On a Silicon Graphics 4D/240 GTX computer, two

bulldozers operate using four processors at 6-8 frames per second (not quite real-time - 10

frames per second is considered the minimal real-time rate) and the scooploader runs at 10-

15 frames per second using two processors. Thus, these extremely computationally

14

a common base class. The terrain (made of grid squares with elevation post corners) has

information holders associated with each of its squares that maintain a linked list of

reference pointers to all earthworks contained or partially contained within the

corresponding square. The earthwork, is responsible for handling its own details - creation,

display, and interaction with vehicles. This approach is especially important in terms of

eliminating common problems that often times occur when the terrain controls the

earthworks (especially those that extend over many squares) such as the simulator’s

inability to display partially visible earthworks due to the fact that the part of terrain

controlling them is not visible during terrain culling. Instead, each visible grid square tells

all earthworks pointed to in their linked list of reference pointers to display themselves.

Another important aspect of Walters’ work is that the earthworks are placed on top

of the ground rather than as modifications to the underlying terrain. Dynamic terrain

features such as craters and trenches definitely appear more realistic if the terrain is

changed; however, such terrain modification methods as adding micro grid squares to each

standard square or completely changing the grid squares and then having to render after

every creation or modification to the terrain proved to be far too computationally intensive

for real-time simulations. By placing the earthworks on top of the terrain and using the

linked list of reference counting pointers, the terrain database does not have to be modified

(and continuously rendered over and over again), and thus, the only changes that need to

be made are additions to and deletions from the earthworks linked lists.

A limitation of this implementation is that although dynamic terrain features are

modeled in real-time within NPSNET, they are not currently networked meaning that when

other DIS simulators run in conjunction with NPSNET, they do not have identical displays

for the same area of the common terrain database - an extremely important criteria for

virtual battlefield simulators. However, a set of PDUs for the DIS protocol have been

recently approved (DIS protocol version 3.0) called destructible entity PDUs and it is the

implementation of these PDUs within NPSNET that we sought to incorporate.

13

Test 4 Conditions:

• 10 km by 10 km clouds extents, 1000 m base and 2000 m top

• 0.75 fractional coverage, cumulus, 1000 m XY cloud resolution

3. Obscurants Summary

As a result of studying the above described obscurant simulations we felt that in

order to achieve our primary goal of real-time physically-based cloud simulation in

NPSNET we needed to design a cloud modeler. We constructed the modeler with the

particle system in mind and incorporated Corbin’s primitive so as to allow the user to

change its physical properties (ambient, diffuse, and alpha components) and to designate a

desired distribution of multiple puffs. In addition, we felt it necessary to create a world of

simulated wind vectors whose magnitude and direction vary with location in the world.

This simulator serves as a testbed for newly modeled clouds created using the modeler.

B. DYNAMIC TERRAIN

1. Walters

Alan Walters implemented dynamic terrain features - craters, berms, and bridges -

in NPSNET [WALT92]. Additionally, his work involved ensuring vehicles realistically

respond to these earthworks by rolling and tilting when encountering uneven terrain or

falling off a bridge when driving over the edge. Each earthwork is a C++ class derived from

Viewpoint
Altitude
(meters)

Frame
Rate
Test 5

Frame
Rate
Test 6

0 10 7.5
500 8.6 6.7
1000 10 6.7
1500 12 8.6
2000 15 8.6
8000 20 10

Table 2: Frame Rate And Viewpoint Altitude Table From Ref. [LADS94]

12

1 consists of two cloud tests’ results taken from a viewing range of 4 km under most of the

clouds and shows that level-of-detail modeling based on proximity of the viewpoint is a

way to substantially improve the frame rate of the simulation. Table 2 displays data from

two additional tests where the user was moving through the cloud layers. Tests 3 and 4

involved a viewpoint moving normal and parallel to the cloud layer respectively. These

tests illustrate that simulating flight through clouds is an area still in need of further

research and experimentation in order to achieve consistent real-time response especially

if a user were to fly parallel through dense fog areas like those that exist on the west coast

of the United States.

Tests 1 and 2 Conditions:

• 10 km by 10 km cloud extents, 1000 m base and 2000 m top

• Cumulus clouds

Test 3 Conditions:

• 10 km by 10 km cloud extents, 1000 m base and 2000 m top

• 0.25 fractional coverage, cumulus, 500 m, XY cloud resolution

Test
Number

Fractional
Coverage

X-Y Cloud
Resolution

Cloud
Polygons

Frame
Rate

1 0.25 1000 84 30

0.25 500 509 8.6

0.25 100 8358 1

2

0.75 1000 254 15

0.75 500 1174 3

0.75 100 22674 0

Table 1: Cloud Resolution Vs. Polygon Count And Frame Rate From Ref. [LADS94]

11

stamps (oriented toward the viewpoint)” were developed to form a variety of clouds

(cumuliform) that are capable of being rapidly rendered [LADS94]. Cloud formations are

displayed by converting 3D grid data into primitives that are rendered at their appropriate

locations. More specifically, a Cloud Generator (based on TASC’s original Cloud Scene

Simulation Model program and controlled by the simulation host) accepts cloud parameters

from an environmental PDU, sounding data, and other pertinent information and produces

3D grid cloud data (based on liquid water content). It also incorporates a predictive model

of cloud data for smooth interpolation between time periods. The Visual Data Generator

and Volumetric Manager (controlled by the graphics processor) then convert this

information into the appropriate primitive data so that all primitives may be rendered by the

graphics hardware. Additionally, there is an entity on the network that acts as the

environmental manager meaning that it is responsible for controlling the overall

environment and for periodically issuing an environmental PDU. This environmental PDU

is the one that has been proposed in the DIS workshop with one exception. In order for the

Cloud Generator to be able to use the information in the environmental PDU, additional

data fields had to be added to the PDU that are required to start the Cloud Scene Simulation

Model program. This model specific addition, however, means that if the DIS

environmental PDU remains as is, then this simulation would not be able to operate in

conjunction with multiple distinct DIS platforms running together. Another issue of

concern regarding DIS compatibility, is that the modeler requires that cloud data be

calculated for the entire geographic database at initialization; whereas most DIS

applications “require a virtual window of interest within the larger geographic database”

[LADS94]. Finally, although the cloud model uses sounding data to incorporate wind

associated with the clouds, it does not use wind vector gridded data.

The modeler runs in real-time within a 3D simulator such as NPSNET, but within

certain restrictions related to fractional coverage, polygon count, resolution, and viewing

perspective. The tables below illustrate the frame rates obtainable (real-time performance

occurs at a minimum of 10 frames per second) at varying degrees of these limitations. Table

10

to fade away since the texture image file is blended with the RGBA characteristics of the

underlying polygon whose alpha value decreases with age.

Plume generation takes place by continually assigning puffs to one of three states -

the unused queue, the active queue, and the transformation and rendering phase. Initially

all puffs are assigned to the unused queue waiting to become part of the obscurant column.

When this event occurs, the puff’s attributes are updated and it is translated the required

amount of distance. It is then scaled and placed back on the active queue. A puff on the

active queue is continually popped off, rendered in the obscurant column, updated, and

pushed back on the active queue until it reaches its maximum designated age at which point

it is returned to the unused queue. Therefore, the obscurant is visible for as long as there

remain puffs that are still “alive.”

This implementation provides for realistic obscurant models within a 3D simulator

where precise physical accuracy is not imperative. However, motion is only simulated as it

relates to smoke and vehicle dust trails; whereas clouds are initially placed in random

positions in the world where they remain for the entire simulation and thus, are not affected

by the ambient air mass surrounding them.

2. Phillips Laboratory, TASC, and LORAL

The U.S. Air Force’s Phillips Laboratory and The Analytical Sciences Corporation

(TASC) jointly developed a high-fidelity model for atmospheric clouds [LADS94]. The

model generates a 3D volume grid of data that is converted into visual primitives that form

the clouds which extend horizontally as far as 50 km and have a resolution as little as 10 m.

These simulated clouds are very realistic, however require hundreds of thousands of

polygons preventing the use of this modeler within a real-time synthetic environment.

The U.S. Army Topographic Engineering Center (TEC) in Ft. Belvoir, Virginia

launched an effort to modify this model as little as possible so that extremely realistic

clouds could be placed in a real-time DIS environment. This challenge was assigned to both

TASC and Loral Advanced Distributed Simulation. “Simple 3D oriented 2D disk-like

9

III. EFFECTS RESEARCH

The research presented below describes related computer simulated clouds,

dynamic terrain, and explosion implementations that have been inserted in three-

dimensional (3D) simulators; however they all have certain limitations, many of which we

sought to eliminate. In addition, several of the ideas presented in this chapter were

incorporated in our efforts to solve these problems. Their precise use is explained in

following implementation chapters.

A. OBSCURANTS AS THEY RELATE TO CLOUDS

1. Corbin

Daniel Corbin developed a library of functions called the Environmental Effects

Library which includes atmospheric obscurants - smoke, vehicle dust trails, and clouds -

that are implemented in real-time in NPSNET [CORB93]. Basically the same

characteristics and modeling features are used for all three obscurants. These cloud

variations are generated using plumes that consist of five columns of continuous puff

primitives translated along a centerline. The puff primitive is made of three perpendicularly

aligned 12-sided polygons each textured by a red, green, blue, and alpha (RGBA) image

file. The concept of a particle system is incorporated meaning that the puff primitives

maintain their own attributes of age, position, size, shape, and translucence, and are

translated as a function of their attributes. Thus, any singular puff is considered to be

insignificant, but, the puffs as a group define the resulting shape and appearance of the

plume.

In addition, the age of the puff (elapsed time since its creation) is a very important

concept in that it determines the position, size, and opacity of each of the puffs. The

maximum obtainable puff age is a function of both the amount of puffs available for the

current obscurant and the maximum downwind distance that the puff is expected to

traverse. As the puff’s age increases (moves away from generating source), it also appears

8

using Simulation Network (SIMNET) and DIS networking formats. In addition, NPSNET

uses Performer in order to take advantage of the optimized system performance features it

provides. This simulator allows users to interact with three-dimensional terrain, structures,

and other players within the world. The goal of the project is to develop a fully interactive,

believable environment and thus, this project incorporates a wide variety of diverse

research areas. These topics of research include real-time scene management, physically-

based modeling, dynamic terrain, autonomous forces and expert systems, meteorological

and atmospheric effects, and DIS integration and development, to name just a few.

Therefore, NPSNET also provides an excellent platform upon which various concepts

related to virtual simulators may be experimented with and studied.

D. SUMMARY

Our research efforts centered around the three areas presented in this chapter. Our

objective was to model effects for NPSNET to support the project’s goal of providing a

truly believable environment. Due to Performer’s readily available multitude of application

enhancing features and its incorporation in NPSNET all of our work was designed using

Performer. Additionally, to further the integration of the DIS protocol within various

military simulators and to enhance NPSNET’s handling of dynamic terrain our final

objective was to design a library of functions for implementing the tentatively approved

DIS Destructible Entity PDUs.

7

which reside at distributed, multiple locations” [ISTA93]. Simply stated, the goal of DIS is

to provide interoperability among different simulated warfare environments. The DIS

protocol mandates that these separate subcomponents or nodes, as they are also called,

control and maintain the state of one or more entities. Thus, a node “owns” certain entities

and it is responsible for communicating their state changes to the other nodes connected to

the simulation. This concept of hosts communicating entity state information eliminates the

need for a central computer for event scheduling meaning that the potential for a single

point of failure does not exist. Another important concept of the DIS protocol is that all

nodes are responsible for interpreting and responding to messages (protocol data units -

PDUs) from other nodes and for maintaining the status of the simulation’s world and all of

its entities. It is therefore up to a node to determine if information is relevant to its part of

the world and if so, to update its environment so that it is consistent with those of the other

participants. Finally, dead reckoning of entities by hosts between receipt of entities’ update

information (last reported location, velocity, and orientation) is also included in this

standard as a means of limiting the network traffic.

By incorporating these concepts, the DIS protocol has provided a robust highly

structured communication system that has allowed many heterogenous applications to

interact together in real-time. This protocol as previously mentioned is still in the

development and testing phase, for there are many aspects of the wartime environment left

to be handled in order to provide a communications protocol that supports an effective and

believable distributed training system. One of these aspects is terrain modifications and

thus, we sought to implement the newly emerging DIS Destructible Entity PDUs.

C. NPSNET

The NPSNET project is a three-dimensional real-time networked combat simulator

developed at the Naval Postgraduate School’s (NPS) Department of Computer Science

[ZYDA93]. It is designed to run on low cost graphics workstations such as the Silicon

Graphics IRIS family of computers and communicates with other nodes on the network

6

of various objects through the use of inheritance among its nodes and in its spatial and

logical organization. Logical organization means like items are grouped together, but this

type of structuring does not always provide the best performance. Spatial organization on

the other hand, allows for optimal culling and intersection testing since nodes are organized

by areas of the world. The nodes available for the construction of this graph each have a

specific function which coupled with the inheritance property provide potential for a wide

variety of object definitions and relationships. Furthermore, although the graphs are

typically built during load time, these nodes can be queried and updated at any time during

the simulation.

Finally, Performer also allows a designer to construct objects using Performer’s low

level geometry. These geometric definitions use tuned rendering loops to eliminate the

CPU bottleneck that often limit many Graphics Library applications. However, a

programmer does not have to design within the Performer environment to benefit from this

enhanced performance, rather this toolkit provides several routines which import popular

database formats into Performer run-time structures.

Performer provides a wide variety of other desirable application development

features; however, there exist far too many to be explained in this document. The above

described features highlight the common reasons why this toolkit is chosen for enhancing

or developing graphics applications. Further information regarding this toolkit is located in

[SGIA94] and [SGIB94].

B. DIS

DIS is a networking protocol which has been and still is being developed to support

the multitude of military simulation and training systems that are continually becoming

available. It was designed with specific goals and missions in mind which are presented

below and are the guidelines we used in our implementation of Destructible Entity PDUs.

“The primary mission of DIS is to create synthetic, virtual representations of

warfare environments by systematically connecting separate subcomponents of simulation

5

II. PERFORMER, DIS, AND NPSNET

This chapter provides an overview description of Silicon Graphics, Inc.

programming toolkit Performer, the Distributed Interactive Simulation (DIS) network

protocol, and the Naval Postgraduate School’s distributed virtual battlefield simulator,

NPSNET, all of which play vital roles in the work presented in this thesis. Further

implementation details regarding these areas are provided as they pertain to the research

described in each of the following Chapters.

A. PERFORMER

Performer is a software toolkit that is used for creating and/or enhancing visual

simulation applications [SGIA94]. In addition, applications are often built using Performer

in order to take advantage of its ability to optimize the simulation’s performance on Silicon

Graphics systems. This application development package consists of two libraries, libpf

and libpr. Libpf is a visual simulation library which provides such features as multipipe and

multichannel capability, multiprocessing, frame control, and hierarchical scene graph

construction which supports Performer’s run-time database structure. Libpr is a low-level

library which furnishes optimized rendering functions, state control, high-speed math

routines and a variety of other functions necessary for implementing real-time graphics.

A key function of Performer is its multiprocessing capability which often times is

implemented and managed solely by this toolkit unbeknownst to the programmer. Libpf

provides a pipelined multiprocessing model where the pipeline stages consist of simulation,

culled traversal, and draw. The simulation stage updates and queries the scene while the

culled traversal process scans the database hierarchy for objects that are potentially visible

and adds those entities to the display list. Finally, the draw process renders the geometry

within the display list.

Another distinguishing feature of Performer is its run-time database structure - it

does not define an archival database or file format. This database structure is built using a

hierarchial graph called a directed acyclic graph. The hierarchy describes the relationship

4

3

C. ORGANIZATION

The following outlines the topics discussed in the remaining chapters of this

document. Chapter II provides an overview of NPSNET, Performer, and DIS. Chapter III

discusses previous work completed related to our objectives. Chapters IV, V, and VI

describe our implementation of clouds, networked dynamic terrain, and explosions

respectively. Chapter VII summarizes our work and provides topics of further research

related to dynamic effects. Finally, the Appendix provides user’s guides for the programs

we developed to test our models.

2

the simulation so that all participants are dealing with the same environmental

circumstances and no one has an unfair advantage that one would not have in wartime.

Perhaps as important as networking, is the concept of immersion. According to

[ZYDA93], in order to have a totally immersive system the graphics representing the

virtual world must respond to the actions and movements of the user via input devices, and

the virtual world must convince the user that he or she is really in the environment

represented by the system. Accurate modeling of effects supports both of these

requirements. For example, when an operator uses an input device whether it be the

keyboard or a button on a flight control stick to shoot another entity, he or she expects to

see as the result of a hit, the inflicted object exploding into many fragments and/or flames.

If the user is not provided such a visual cue and others during the course of the simulation,

then the system is not doing its job of convincing the user that he or she is actually in the

virtual world. It is this feeling of immersion that enables a user to benefit the most from his

or her training experiences in synthetic environments.

B. OBJECTIVES

The objective of this research was to develop dynamic effects for real-time

distributed virtual world simulators. This research included modeling as well as networking

such occurrences. Specifically, we sought to model realistic clouds (including their

movement) and physically-based explosions, and to network dynamic terrain features using

a set of protocol data units (PDUs) recently developed for the Distributed Interactive

Simulation (DIS) protocol. Furthermore, our goal was to implement these effects in the

Naval Postgraduate School’s real-time distributed virtual world simulator, NPSNET. In

addition, NPSNET incorporates Silicon Graphics Inc.’s software enhancing application

program interface (API), Performer, and therefore our work was designed using Performer.

NPSNET, Performer, and DIS are all further described in Chapter II.

1

I. INTRODUCTION

A. BACKGROUND

With more and more military training simulators becoming available and many

military leaders looking toward these systems as a solution to the constant budget cuts the

armed forces are being required to handle, accurate realistic modeling within synthetic

environments is becoming absolutely imperative. Various virtual battlefield simulators

incorporate realistically modeled vehicles and weapons, physically-based vehicle and

weapon motion, vast terrain databases, and even autonomous agents; however, most lack

the incorporation of more subtle effects that truly make a difference in actual war time

situations. These effects include the simulation of meteorological occurrences such as the

presence of clouds, wind, and precipitation, dynamic terrain features, and explosive effects.

For example, the amount of clouds and their density present in the environment play a

major role in what the warfighter is able to see approaching in the distance or in what

sensors are able to perceive. In addition, adverse weather conditions can slow a unit down

significantly and force unit commanders to have to devise alternative plans, sometimes

within a moments notice. Therefore, if designers of synthetic environments neglect to

model such occurrences, then trainees depending heavily on combat simulators to maintain

their high state of operational readiness will find themselves under prepared to handle such

situations during actual war time.

Beyond the concept of just modeling these effects, is the issue of networking them.

Having the ability to conduct distributed simulations across long distances is one of the

main factors that brought about this great deal of enthusiasm for using synthetic

environments as an effective means of training troops; for they save a great deal of money,

time, and complicated planning that normally are invested in bringing widespread units

together for training exercises. Therefore, because networking is a key component to the

success of such training systems, these effects must also be communicated to all hosts in

xiv

xiii

LIST OF TABLES

1. Cloud Resolution Vs. Polygon Count And Frame Rate From Ref. [LADS94] 12

2. Frame Rate And Viewpoint Altitude Table From Ref. [LADS94] ... 13

3. Cloud Types and Associated Conditions After Ref. [NAVA79] ... 26

4. Applicable Iris Performer Node Types After Ref. [SGIA94] .. 31

5. Performance Tests of Clouds Composed of Uniformly Distributed Puffs 40

6. Create/Modify PDU ... 55

7. Deletion PDU ... 56

8. Request ID PDU .. 57

9. Reply ID PDU .. 58

10. Request Object PDU .. 60

11. Reply Object PDU ... 62

xii

xi

LIST OF FIGURES

1. 8-sided Polygon Built Using Tristrips ...28

2. Creating a pfGeoState to Attach to pfGeoSet ..31

3. Cloud Modeler Scene Hierarchy ..32

4. Uniform Distribution Drawing Order ..36

5. Uniformly Distributed Cloud - 100 Puffs, 4 Rows, and Depth of 337

6. A Standard Normal Distribution Curve ...38

7. Cloud With Normal Distribution of 100 Puffs and Depth of 1038

8. The Symmetrical Normal Distribution ...39

9. Cloud With Symmetrical Normal Distribution of 100 Puffs and Depth of 1040

10. Performer’s Layered Atmospheric Model ...43

11. Winds Within the Wind Vector Simulation ..45

12. The Scene Hierarchy for the Wind Vector Simulator ...46

13. Default Cloud ..47

14. Structures that Support the Use of Destructible Entity PDUs64

15. Functions that Support the Use of Destructible Entity PDUs65

16. Example Host Matrix ..66

17. Destructible Entity Request and Reply PDU Sequence ..72

18. Creation or Modification of a Destructible Entity ..73

19. Example of Obtaining and Modifying pfGeoSet Data ...82

20. Algorithm Used to Convert Tristrips to Independent Triangles84

21. Computing the Normal of a Triangle ..85

22. Computation of Instantaneous Velocity for Triangle Primitives89

23. Ballistic Motion Equations ...90

24. Helicopter Before Impact ..92

25. Helicopter After Impact ..93

x

ix

A. INTRODUCTION TO THE EXPLOSION FUNCTION................................ 77

1. Function’s Parameters... 78

2. Performer pfGeoSet Functions ... 79

B. EXPLOSION FUNCTION DETAILS... 80

1. Explodable Format Conversion Algorithm... 81

2. Explosion Motion Equations .. 87

C. PERFORMANCE WITHIN A TEST APPLICATION................................... 91

D. EXPLOSIONS SUMMARY.. 93

VII. CONCLUSION AND TOPICS FOR FURTHER RESEARCH 95

A. CONCLUSION.. 95

B. FUTURE RESEARCH .. 95

APPENDIX. USER’S GUIDES .. 97

A. CLOUD MODELER.. 97

1. How to Start the Program ... 97

2. Input Devices for Designing and Viewing a Cloud.................................. 97

B. WIND VECTOR SIMULATOR ... 102

1. How to Start the Program ... 102

2. Input Devices for Viewing the Clouds Within the Wind Vector World. 102

C. DIS DESTRUCTIBLE ENTITY PDU IMPLEMENTATION PROGRAM. 103

D. EXPLOSIONS TEST HARNESS ... 104

1. How to Start the Program ... 104

2. Key Bindings .. 104

LIST OF REFERENCES.. 107

INITIAL DISTRIBUTION LIST ... 109

viii

B. CLOUD MODELER.. 27

1. Puff Characteristics and Construction .. 27

2. Lighting... 29

3. Resulting pfGeoState Associated With the Cloud Puff 30

4. Adding the Puff to the Scene Graph Hierarchy .. 30

5. Cloud Modeler’s Capabilities ... 33

6. Cloud Puff Distributions... 35

7. Performance of and Applications for the Cloud Modeler......................... 39

C. MODELING THE STRATUS LAYER .. 41

1. Characteristics... 41

2. Stratus Layer in the Cloud Modeler.. 42

3. Stratus Layer in NPSNET... 43

D. CLOUDS AFFECTED BY WINDS.. 44

E. CLOUD SUMMARY .. 49

V. NETWORKING DYNAMIC TERRAIN... 51

A. DIS VERSION 3.0 DESTRUCTIBLE ENTITY PDUs 52

1. Create/Modify PDU.. 53

2. Deletion PDU.. 54

3. Request ID PDU ... 56

4. Reply ID PDU... 57

5. Request Object PDU... 58

6. Reply Object PDU .. 59

B. DESTRUCTIBLE ENTITY PDU IMPLEMENTATION............................... 61

1. Destructible Entity Functions File .. 63

2. Player and Terrain Manager Interaction ... 71

3. Destructible Entity PDU Performance.. 75

C. DESTRUCTIBLE ENTITY PDU SUMMARY.. 76

VI. EXPLOSIONS .. 77

vii

TABLE OF CONTENTS

I. INTRODUCTION .. 1

A. BACKGROUND ... 1

B. OBJECTIVES .. 2

C. ORGANIZATION ... 3

II. PERFORMER, DIS, AND NPSNET ... 5

A. PERFORMER.. 5

B. DIS ... 6

C. NPSNET... 7

D. SUMMARY... 8

III. EFFECTS RESEARCH.. 9

A. OBSCURANTS AS THEY RELATE TO CLOUDS.. 9

1. Corbin ... 9

2. Phillips Laboratory, TASC, and LORAL ... 10

3. Obscurants Summary.. 13

B. DYNAMIC TERRAIN .. 13

1. Walters .. 13

2. Virtual Bulldozer .. 15

3. Dynamic Terrain Architectures... 16

4. Dynamic Terrain Summary... 20

C. EXPLOSIONS ... 20

1. Nash .. 20

2. Monahan ... 21

3. Explosions Summary .. 23

D. SUMMARY OF EFFECTS RESEARCH ... 23

IV. CLOUDS... 25

A. CLOUD CHARACTERISTICS .. 25

vi

v

ABSTRACT

Distributed three dimensional combat simulation systems such as the Naval

Postgraduate School’s NPSNET project lack many of the characteristic effects of the live

battlefield. This deficiency is the problem we sought to eliminate. Our approach to solving

this absence of effects was to evaluate previous work performed in this area and incorporate

aspects of this research that would assist in creating believable effects capable of running

in real-time.

This thesis focuses on simulating three elements of these war zones - realistic

clouds both from an internal and external viewpoint which move due to gridded wind

vectors, incorporation of a recording and transmission process for dynamic terrain effects

through the implementation of the Distributed Interactive Simulation (DIS) protocol’s

recently approved Destructible Entity protocol data units (PDUs), and physically-based

explosions. The result of this research is a set of effects’ simulators available for further

studying of and experimenting with modifications to these implementations. These

programs also provide users with frame rate feedback regarding their modifications to the

effects. Furthermore, the cloud implementations and explosive effects are too

computationally expensive to be incorporated within complex simulators such as

NPSNET.

iv

iii

Approved for public release; distribution is unlimited

MODELING OF
REAL-TIME DYNAMIC EFFECTS

Anne E. Watt
Lieutenant, United States Navy

B.S., United States Naval Academy, 1988

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1994

Author:
Anne E. Watt

Approved By:
David R. Pratt, Thesis Advisor

Michael J. Zyda, Thesis Co-Advisor

Ted Lewis, Chairman, Department of Computer Science

ii

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSORING/ MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
 OF REPORT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

5. FUNDING NUMBERS

i

Watt, Anne E.

September 1994 Master’s Thesis

Unclassified Unclassified UnlimitedUnclassified

 MODELING OF REAL-TIME DYNAMIC EFFECTS

Naval Postgraduate School
Monterey, CA 93943-5000

The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the United States Government.

Approved for public release; distribution is unlimited.

Distributed three dimensional combat simulation systems such as the Naval Postgraduate School’s NPSNET project
lack many of the characteristic effects of the live battlefield. This deficiency is the problem we sought to eliminate. Our
approach to solving this absence of effects was to evaluate previous work performed in this area and incorporate aspects of this
research that would assist in creating believable effects capable of running in real-time.

This thesis focuses on simulating three elements of these war zones - realistic clouds both from an internal and external
viewpoint which move due to gridded wind vectors, incorporation of a recording and transmission process for dynamic terrain
effects through the implementation of the Distributed Interactive Simulation (DIS) protocol’s recently approved Destructible
Entity protocol data units (PDUs), and physically-based explosions. The result of this research is a set of effects’ simulators
available for further studying of and experimenting with modifications to these implementations. These programs also provide
users with frame rate feedback regarding their modifications to the effects. Furthermore, the cloud implementations and
explosive effects are too computationally expensive to be incorporated within complex simulators such as NPSNET.

Graphics, Clouds, Distributed Interactive Simulation (DIS) protocol, Dynamic
Terrain, Explosions

1

THESIS

MODELING OF REAL-TIME DYNAMIC EFFECTS

by

Anne E. Watt

September 1994

 Thesis Advisor: David R. Pratt
 Co-Advisor: Michael J. Zyda

Approved for public release; distribution is unlimited.

NAVAL POSTGRADUATE SCHOOL
Monterey, California

